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Abstract—Cyber-attacks have become increasingly sophisti-
cated, which also drives the development of security analytics
that produce countermeasures by mining organizational logs,
e.g., network and authentication logs. Graph security analytics
(GSA) that can model the complex communication patterns
between users/hosts/processes have been extensively developed
and deployed. Among the techniques that power GSAs, Unsu-
pervised Network Representation Learning (UNRL) is gaining
traction, which learns a latent graph representation, i.e., node
embedding, and customizes it for different downstream tasks.
Prominent advantages have been demonstrated by UNRL-
based GSAs, as UNRL trains a detection model in an un-
supervised way and exempts the model developers from the
duty of feature engineering.

In this paper, we revisit the designs of previous UNRL-
based GSAs to understand how they perform in real-world
settings. We found their performance is questionable on large-
scale, noisy log datasets like LANL authentication dataset,
and the main reason is that they follow the standard UNRL
framework that trains a generic model in an attack-agnostic
way. We argue that generic attack characteristics should be
considered, and propose ARGUS, a UNRL-based GSA with
new encoder and decoder designs. ARGUS is also designed to
work on discrete temporal graphs (DTG) to exploit the graph
temporal dynamics. Our evaluation of two large-scale datasets,
LANL and OpTC, shows it can outperform the state-of-the-art
approaches by a large margin.

Index Terms—Graph Neural Network, Security Analytics, Dis-
crete Temporal Graph

1. Introduction

Modern cyber-attacks have reached an unprecedented
level of complexity. To infiltrate a company, the attack
usually takes multiple steps, including reconnaissance, ex-
ploitation, lateral movement and data exfiltration, as summa-
rized in Advanced Persistent Threat (APT) kill-chain [1]. To
counter such sophisticated attacks, a large number of enter-
prises have deployed security analytics [2], the systems that
analyze logs (e.g., host and network logs) collected by the
devices (e.g., web servers, hosts, and domain controllers) in-
side their networks and produce proactive security measures,
like timely detection. A lot of recent security analytics,

including the academic approaches [3]–[6] and commercial
systems [7], [8], attempt to abstract communication graphs
and perform graph-based methods, such as graph traversal,
similarity testing, and embedding, to detect the completed
or ongoing attacks. We term these systems as graph security
analytics (GSA).

GSA has shown a lot of promise, as they are able
to model the communications between devices internal to
an enterprise and across enterprise boundaries. Though
numerous sophisticated techniques are developed to hide
the activities on a single device (e.g., exploiting 0-day
vulnerabilities or erasing the host logs), the cross-device
communication patterns are often hard to hide. One example
is lateral movement, through which the attacker moves from
a compromised machine to another high-profile machine
with stolen credentials [9]. Such movement often introduces
abnormal links or paths on a graph abstracted from the
network and authentication logs, and it has been identified
as a major use case for GSA [10], [11].

With the progress in deep learning, there is a trend
of building GSA with deep learning methods, and one
prominent direction is to apply Unsupervised Network Rep-
resentation Learning (UNRL) [12]. At a high level, UNRL
leverages a trained encoder to generate latent representation,
e.g., node embedding, from the graph, and a decoder to
compute node/edge scores for downstream tasks like node
classification and link prediction. Graph autoencoder (GAE)
is a prominent approach using Graph Convolutional Net-
work (GCN) to realize UNRL [13]. Compared to the other
methods, UNRL is able to learn complex graph patterns
automatically and training the encoder does not require any
labeled negative sample. Hence, a number of UNRL-based
GSAs have been developed in recent years [10], [11], [14]–
[16].

Analysis of prior UNRL-based GSAs. In this paper,
we revisit the designs of these systems to understand their
performance in a real-world setting. By comparing their
results on LANL authentication dataset, which contains
over 1 billion authentication events but only 749 malicious
events, we found none of them achieve satisfactory detection
accuracy. The best was achieved by Euler [14], but its
average precision is less than 0.01. On the other hand, Euler
is able to achieve over 0.9 average precision on non-security
datasets like Enron [17], Colab [18] and Facebook [19],



suggesting there exists a big gap between non-security and
security settings, and applying UNRL for GSA is non-trivial.

Three design issues were identified during our study.
First, these GSAs directly map the problem of attack de-
tection to link prediction, but malicious edges and negative
edges, the classification targets of the two problems, could
have very different distributions. Second, since standard
encoders like GCN and GraphSage are used, these GSAs
cannot incorporate edge features, like event attributes other
than source and destination, into the framework. Third, the
majority of GSAs abstract static graphs from the logs, which
neglects the important temporal dynamics across different
time snapshots.

Our Approach. In this paper, we present ARGUS1, a
GSA with new encoder and decoder designs that are aware
of the generic attack characteristics. ARGUS abstracts the
data into discrete temporal graphs (DTG) and uses Gated
Recurrent Unit (GRU) to capture temporal dynamics across
snapshots [20]. The encoder is inspired by Message Passing
Neural Networks (MPNN) [21] to incorporate node features,
edge weights and edge features all into the training process.
For the decoder, instead of simply measuring the graph re-
construction loss [14], we consider the community patterns
that are likely exhibited by the attacker [22] and the average
precision as a major optimization goal [23].

We evaluate ARGUS on two large-scale datasets,
LANL [24] and OpTC [25]. On LANL, ARGUS is able
to achieve much better accuracy compared to the previ-
ous works, e.g., 0.3227 average precision (AP) compared
to 0.0448 of Euler (state-of-the-art). On OpTC, ARGUS
achieves 0.8074 AP (Euler has 0.6426 AP). The results
suggest ARGUS could handle large-scale, realistic datasets,
without triggering a large amount of false alerts that would
overload the security analysts. Given that LANL and OpTC
present different types of attacks (LANL focuses on ma-
licious authentication attempts, while OpTC simulates a
broader range of attack behaviors like communication with
C2 servers), we believe the design of ARGUS is suitable
to detect different types of attacks, in other words, not too
attack-specific.

Contributions. We summarize the contributions as below.

• We revisit the designs of the existing UNRL-based
GSAs and the gap between the UNRL framework and
the challenges in security analytics.

• We develop ARGUS, a new UNRL-based GSA, to
address the identified issues and achieve high detection
accuracy.

• We evaluate ARGUS on two large-scale log datasets
and demonstrate that its design goals can be achieved.

• We release the source code of this project to an open-
source repository.2

1. ARGUS is short for Attack-aware, Graph-based, Unsupervised
Security Analytics.

2. ARGUS: https://github.com/C0ldstudy/Argus

2. Background

In this section, we first explain the techniques related
to UNRL and review the research that applies UNRL for
security analytics. Then, we briefly review the representative
encoders used to construct embeddings under UNRL. Next,
we give a formal definition of temporal graphs that are used
for data modeling in this paper. Finally, we briefly describe
the two log datasets used in this study. The symbols used
in this paper are defined in Table 1.

TABLE 1. THE MAIN SYMBOLS USED IN THE PAPER.

Term Symbol
Graph G
Edges E
Nodes V
One edge e
One node v
Edge label y
Edge weights W
Edge features F
Node embeddings Z
Node features X
Snapshot time t
Adjacency matrix A

2.1. Unsupervised Network Representation Learn-
ing (UNRL)

UNRL aims to generate latent representations for nodes,
i.e., node embeddings, over graphs that come without la-
bels [12]. The latent representation aims to capture the
key structural features and be usable as input for various
machine-learning models like neural networks. Different
downstream tasks can be performed on the same latent
representations, including node classification, link predic-
tion, clustering, graph reconstruction, etc. Previous research
shows outstanding performance can be achieved on large-
scale relational data [26] and matrix completion / recom-
mendation [27].

More formally, given a graph G = (V, E), where V rep-
resents nodes and E represents edges, UNRL aims to learn
low-dimensional representations of each node v ∈ V so that
connected nodes (e.g., similar neighbors) are closer in the
embedding space. The distance between node embeddings
can be used to generate node/edge scores for the downstream
tasks. Take link prediction as an example, which predicts
whether two nodes are likely to have a link (e.g., whether
two users on Facebook actually know each other). An edge
embedding can be generated by combining the node em-
beddings from the edge’s two ends and converted into the
probability of edge existence.

Recently, UNRL has been leveraged to develop graph-
based security analytics (GSA), which aims to detect cyber-
attacks by mining large-scale logs that can be represented
as graphs (e.g., machines as V and network communica-
tions as E). So far, most of the prior work modeled the
attack detection as link prediction: assuming that in the



training period the links between entities (e.g., machines,
users and processes) are normal, the links that are assigned
with low likelihood scores in testing will be considered
abnormal. Along this direction, prior work has attempted to
detect lateral movement of APT [10], network attacks with
heterogeneous graphs modeling [11], and host attacks with
knowledge graph modeling [16]. Yet, in Section 3 we show
that it is non-trivial to apply UNRL for GSA and design
pitfalls exist in the prior work.

2.2. Graph Encoders

A number of approaches have been proposed to gen-
erate node embeddings from graph, e.g., Node2Vec [28],
DeepWalk [29], NetMF [30], and HOPE [31]. Among them,
graph autoencoder (GAE) is a prominent approach that
leverages neural network models to encode graphs [13],
[32]. The two most popular GAEs are Graph Convolutional
Network (GCN) [33] and GraphSAGE [34]. ARGUS uses
GCN, which is elaborated below.

GCN relies on graph convolution to predict the features
of a node in the next layer by aggregating its neighbors’
features. GCN chooses to use a multi-layer neural network
for the graph convolution function, which is defined on the
spectral domain. Each layer follows the propagation rule for
neighbor aggregation:

H l+1 = σ(D̃− 1
2 ÃD̃− 1

2H lW l) (1)

Where W l is a trainable weight matrix of the layer l, H l

is the hidden features of the layer l, A is the adjacency
matrix, I is the identity matrix, Ã = A+ I , D̃uv = ΣvÃuv,
W l is the trainable weight matrix of l-th layer, and σ is
the activation function, such as ReLU. The node features X
are used to fill H0. When GCN is used as an encoder, the
output of the last layer becomes the node embedding.

2.3. Discrete Temporal Graph (DTG)

The GSAs listed in Section 2.1 train and test on static
graphs. Recently, a few studies [14], [15] proposed to model
the graph as a Discrete Temporal Graph (DTG), where the
graph evolves through time and updates at discrete periods.
Within a period, each graph snapshot consists of all changes
after the prior graph snapshot. Our framework ARGUS builds
on DTG, which we illustrate in Figure 1.

Under the definition of static graph G = (V, E), we
define a DTG snapshot observed in time slot t, with Gt =
(Vt, Et). Hence, a sequence of temporal graphs observed
in t = 1, 2, ..., τ can be denoted as G1,G2, ...,Gτ . An edge
e = (u, v) exists in Et, when u, v ∈ Vt and some interactions
happen between them during snapshot t.

Temporal link prediction is an important task on DTG,
which predicts the apparition of new links at a given period
of snapshot t, with the help of data observed in the previous
periods. It has been used by GSAs to detect anomalous
interactions in an organization. For instance, Netwalk
[35] used clique embedding to learn the representation of

t1
t2

Figure 1. Example of a discrete temporal graph evolving through time.

TABLE 2. THE STATISTICS OF THE LANL DATASET AND THE OPTC
DATASET AFTER FILTERING NETWORK FLOWS. NODES MEAN

MACHINES (LANL) OR HOSTS (OPTC).

Dataset #Nodes #Events Duration
LANL-auth 17,649 1,051,430,459 58 days
LANL-flows 12,027 129,977,411 36 days
LANL-redteam 305 749 28 days
OpTC 814 92,073,717 8 days
OpTC-redteam 28 21,784 3 days

dynamic networks for graph anomaly detection. STEP com-
bines GCN and LSTM (Long short-term memory) for event
prediction [36]. StrGNN to detect unusual subgraph struc-
tures with GCN and GRU [37]. PIKACHU [15] and Eu-
ler [14] leveraged temporal random walk and GCN to detect
malicious links in DTG. ARGUS, elaborated in Section 4,
outperforms these models on temporal link prediction.

2.4. Host and Network Logs

Host-level logs (e.g., system audit logs and telemetry
data generated by system monitors like auditd [38], sys-
mon [39], ETW [40], as well as EDR systems like Carbon-
Black [41] and CrowdStrike [42]), and network logs (e.g.,
network flows and proxy logs) are main data sources for
security analytics. Our framework ARGUS is tested on two
open datasets, LANL and OpTC, to discover redteam events
in them.
LANL. The LANL 2015 Comprehensive, Multi-Source
Cyber-Security Events dataset [24] (or “LANL” for short)
contains anonymized event data from four sources within
Los Alamos National Laboratory’s internal computer net-
work, including authentication logs from individual com-
puters and domain controller servers, process start and stop
events, DNS logs at DNS servers, and network flow at
routers. Simulated redteam attacks from the compromised
machines were also performed during the data collection
period, and their associated authentication events were la-
beled separately. We use the authentication logs (“LANL-
auth”), network flows (“LANL-flows”) and redteam events
(“LANL-redteam”) for evaluation. In Table 2 we summarize
the dataset statistics. LANL posed prominent challenges in
the high volume of events and very unbalanced distribution
of benign and malicious events.



OpTC. DARPA Transparent Computing (TC) program [43]
aims to provide high-fidelity visibility into systems and
aids modern attack campaign discovery, such as advanced
persistent threat (APT) detection. The five-year program
produces several batches of host-level telemetry data from
its adversarial engagements, which contain various types
of attacks across different OSes. We obtain the DARPA
Operationally Transparent Cyber dataset (or “OpTC” for
short) [25], which is generated at the end of the program and
released in extended Cyber Analytics Repository (eCAR)
format, for evaluation purposes. The dataset records all host-
level activities between subjects like processes and objects
like files and sockets on 814 hosts during one week. Like
prior work [15], we use the “START” events related to the
“FLOW” objects (i.e., network flows), and the statistics after
filtering is shown in Table 2.

3. Motivation of ARGUS

While recent GSAs built on top of UNRL have shown
prominent advantages over traditional approaches discussed
in Section 7—in particular by training a model with-
out malicious samples and learning the graph features
automatically—several issues prevent them from being ef-
fective on large-scale, noisy log datasets. In this section, we
first review the issues and then describe our solutions.

3.1. Issues with Prior Work

After careful reviewing and retraining the existing
UNRL-based GSAs, we find the performance of many are
largely impeded by low precision on large-scale datasets
such as LANL [10], [11], [14], [15], [36]3 (we describe
them in details in Appendix A.1). For instance,

• Euler [14], the state-of-the-art GSA based on the
GCN+GRU architecture, yielded 0.0318 precision on
LANL (376 true positives plus 11,464 false positives),
though its false positive rate (FPR) is as low as 0.00454.

• PIKACHU [15] reported 0.0505 FPR, which is already
much higher than 0.00578 of Euler, though its reported
area under the ROC curve (AUC) is as high as 0.94.

• Log2Vec [11] only reported AUC at 0.91, which is even
lower than 0.94 AUC from PIKACHU.

• GL-LV/GV [10] reported 0.009 FPR (635 true positives
plus 107,960 false positives).

By analyzing the designs of these security analytics, we
found three common issues:
Issue-A: Gap between link prediction and attack de-
tection. Although it is common to model attack detection
as link prediction for UNRL, the definitions of negative
(non-exist) edges and malicious edges are indeed different,

3. STEP [36] reported over 0.98 accuracy on LANL, but its goal is to
predict the existence of edges, rather than detecting redteam events.

4. Euler reported average precision, instead of precision, true positives
and false positives, so we reran Euler [45] in dynamic link detection mode
(explained in Section 4.1) with default parameters. We are able to obtain
similar metrics like FPR as the paper (0.0045 vs 0.0057).

which leads to a learning gap that a system trained to
recognize negative edges does not detect malicious edges
at a reasonable accuracy.

First, the distributions of benign edges, malicious edges,
and non-exist edges (or their sub-spaces in the high dimen-
sional detection space) could be dramatically different.

1) Benign edges follow expected program/system/network
control- and data-flow.

2) Malicious edges follow allowed-but-unexpected
control- or data-flow within a host or across hosts.

3) Negative edges generated for training purposes can be-
long to impossible control- or data-flow, not permitted
by the binary or network topology.

Therefore, non-exist edges could be totally different
from both benign and malicious edges and not always
helpful in differentiating benign and malicious edges.

In fact, we found Euler on LANL is able to reach
a precision over 0.9943 on the validation sets filled with
negative edges, but its precision on the testing set filled
with malicious edges is less than 0.01, suggesting malicious
edges have a very different distribution from negative edges.

Second, prior GSAs employ standard loss functions
defined for generic graph training tasks, e.g., cross-entropy
(CE) loss used by Euler. These loss functions are situated to
optimize the models for accuracy (i.e., the ratio of correctly
predicted samples), but for datasets with a very large ratio
of benign events like LANL, precision (i.e., the ratio of
correctly predicted malicious samples) is more important,
which would require different loss functions.
Issue-B: Missing edge features. Though a host/network
event often contains many fields (e.g., packet size in network
events), we found they are rarely used as edge features on
the constructed graphs. As such, the information carried
by each edge is limited. For instance, ShadeWatcher [16]
assigns a type (e.g., read, write and clone) to an edge, but
ignores other attributes such as action parameters; Euler [14]
only computes the edge weights by the number of authenti-
cation events between two machines. We suspect that such
a design choice is due to the limitations of standard graph
encoders. For instance, GCN only accepts node features
and edge weights [46] and GraphSAGE only accepts node
features [47].

However, edge features could carry critical information
in security graphs. Take LANL as an example: in addition to
the source and destination hosts, each authentication event
includes the user ID for login. Malicious login events could
have user IDs that are rarely seen on the source or desti-
nation hosts. In addition to the authentication logs, LANL
also collects other data that provides contextual information
to logins, like network flows. Yet, challenges exist in what
features to select and how to integrate them into a UNRL
framework.
Issue-C: Static graph modeling over long period.
Most GSAs, except Euler and PIKACHU, rely on learn-
ing/detecting on a gigantic static graph, which is usually
constructed over a long period of time. For example, Shade-
Watcher [16] merges events from an entire week to construct



Client A

Client B

Server X

Server Y

Alice
Client A

Client B

Server X

Server YBob
Bob

Client A

Client B

Server X

Server Y

Alice
Bob

t1 t2 t3

Figure 2. An example of anomalous logins, which is similar as [44]. Alice and Bob own two client machines A and B in an enterprise. Server X and Y
can be logged in with Alice’s and Bob’s credentials remotely. The attacker conducts lateral movement at the period t3 to log into Server Y.

a graph. The static graph provides rich information for
learning, but also loses critical information for detection:

1) The long waiting time for all events to arrive to con-
struct a static graph is not friendly for early alerting.

2) The temporal patterns ignored by the static graph could
lead to evasion of advanced attacks. Here we use a
lateral movement example as demonstration, which is
also illustrated in Figure 2. Normal logins happen at
t1 and t2 by Alice and Bob separately. In t3, an
attacker Eve uses Alice’s credential to log into Server
X, compromises Bob’s credentials there (e.g., thorough
pass-the-hash attacks [9]), and uses it to log into Server
Y. If the detection model is trained on a graph merging
events form t1 to t2, the malicious logins on t3 are
likely to be missed, because it exists in the training
graph as a normal path. On the other hand, the logins
in t3 are likely to be considered as abnormal under
DTG as each snapshot and their delta are modeled.

3.2. Solutions from ARGUS

To address the aforementioned issues, we believe fol-
lowing the generic workflow and framework of UNRL is
insufficient, and the GSA should be carefully designed to
incorporate security domain knowledge. Here we review the
key components that are integrated by ARGUS, and elaborate
on them in Section 4.

• To integrate the useful event fields as edge features,
we designed a new encoder on top of Message Passing
Neural Networks (MPNNs) [21].

• Instead of training GSA model to achieve high accu-
racy, we adopt new loss functions [23] to optimize the
model for high precision.

• For the downstream decoder, we redesign it to capture
the community patterns that are likely exhibited by the
attacker (e.g., lateral movement and port scanning), by
adjusting previous methods in graph anomaly detec-
tion [22]).

• Instead of static graph modeling, we model the events
as DTG like [14], [15] to capture the temporal dynam-
ics.

4. Design of ARGUS

In this section, we first describe the workflow of ARGUS.
Then, we elaborate the design of our encoder. Finally, the
decoder is described.

4.1. Operational Mode and Threat Model

ARGUS aims to detect traces related to ongoing or com-
pleted cyber-attacks, including unauthorized logins, malware
infections, lateral movements, etc. Like other works built on
UNRL [14]–[16], we assume ARGUS is trained using data
from an attack-free period. During testing, ARGUS classifies
an edge in a DTG snapshot as benign or malicious, using all
node and edge information observed in this snapshot. This
mode aligns with the dynamic link detection mode presented
by Euler [14]. Noticeably, Euler has another mode named
dynamic link prediction, which classifies an edge without
any information of its current snapshot (it only relies on the
prior snapshots). However, this mode incurs much higher
error rate than detection, hence we leave this mode out. In
Section 5.5, we conduct a preliminary study about how data
poisoning impacts the performance of ARGUS.

ARGUS follows the standard threat model used by other
security analytics, which assumes the correctness and in-
tegrity of the logs/data collected from hosts and network
monitors. Note that advanced attackers could break this
assumption, and systems that protect log integrity can be
integrated as a defense [48], [49].

4.2. Workflow

As a UNRL system, ARGUS follows the generic GAE
framework [13] to compute the node embedding from a
graph and uses the decoder to compute edge probabilities
from the node embedding. The original GAE uses GCN for
the encoder and the inner-product of node embedding for
the decoder. More formally,

Â = p(A|Z) = σ(ZZ⊤),with Z = GCN(X,A) (2)

where Z ∈ Rn×r is the node embedding generated by the
encoder, X represents the node features, A is the adjacency
matrix, σ is the activation function, and Â is the recon-
structed adjacency matrix by the decoder, which can contain
edge probabilities p(A|Z). Training GAE aims to update the
GCN parameters such that Â and A are similar.

Under DTG modeling, node embedding Zt should be
generated for each graph snapshot Gt, and the embeddings
before t could be leveraged to update Zt. Hence, the GAE
encoder needs to be redesigned to accommodate the prior
embeddings. Like previous works [20], we stack the en-
coder upon a Recurrent Neural Network (RNN), e.g., Gated



Figure 3. ARGUS workflow.

Recurrent Unit (GRU), to capture the topology and node
changes in a sequence of DTG snapshots. More formally,

Z ′
t = ENC(Xt, At, Ft) (3)

where ENC is the trained encoder. Xt and At are the node
features and adjacency matrix at t. When ENC uses GCN
and only uses Xt and At as input, its layer-wise structure
follows Equation 1. In Section 4.3, we show a new design
of ENC that considers edge features Ft as another input.

Assuming T is the number of all observed snapshots,
the RNN layer takes in [Z ′

0, Z
′
1, ..., Z

′
T ] and updates them

to [Z0, Z1, ..., ZT ] by leveraging the observed temporal dy-
namics.

[Z0, Z1, ..., ZT ] = RNN([Z ′
0, Z

′
1, ..., Z

′
T ]) (4)

The node embedding Zt can be extracted from the RNN
output at index t. The temporal relation is automatically used
by the RNN, which uses the embeddings from snapshots 0
to T to update the same set of snapshots.

In a DTG snapshot Gt, the decoder takes the Zt gener-
ated by the encoder to reconstruct the adjacency matrix Ât.
We note that the decoding function can be different from
σ(ZZ⊤), so we define the DTG decoder DEC as:

Ât = p(At|Zt) = DEC(Zt) (5)

In Section 4.4, we elaborate the design of our DEC.
During training, ARGUS loads event logs, splits them

into [G0,G1, ...,GT ], and generates Xt, At and Ft for each
snapshot Gt (0 ≤ t ≤ T ). In the forward pass, the en-
coder produces node embeddings [Z0, Z1, ..., ZT ] and the
decoder reconstructs [Â0, Â1, ..., ÂT ] from them. The loss
is computed between [Â0, Â1, ..., ÂT ] and the ground-truth
[A0, A1, ..., AT ]. In the backpropagation pass, the loss is

used to compute the gradients and update the RNN, encoder,
and decoder (if it has trainable parameters). During testing,
after logs of a snapshot duration T+k (k > 0) are collected,
its embedding ZT+k will be generated using Xt, At and Ft,
together with the prior embeddings Z0, Z1, ..., ZT+k−1. The
decoder generates ÂT+k from ZT+k. Instead of computing
loss from this reconstructed adjacency matrix, we compare
the probability score of each edge in ÂT+k with a threshold
τ , and set off alarms for the ones under τ . We summarize the
whole workflow of ARGUS, including training and testing,
in Algorithm 1 and Algorithm 2.
Edge sampling. In the standard UNRL setting, the training
objective can be measured by a loss function:

L = −log(p(At|Zt))

= −Σe∈Pt log(f(e))

|Pt|
− Σe′∈Nt

log(1− f(e′))

|Nt|
(6)

where Pt and Nt mean the positive (exist) and negative
(non-exist) edges in Gt and f computes a score from edge
e or e′. Computing on this loss function is intractable when
the number of nodes is large. As a large graph is often
sparse, negative sampling [50] is often performed to sample
the negative edges, so Nt will be reduced. The chances that
a negative edge is sampled can be uniformly random or
proportional to the node degrees. During evaluation, we set
the number of sampled negative edges same as the positive
ones.

4.3. Encoder

Different from previous works that only consider node
features and edge weights (Issue-B in Section 3.1), we pro-
pose a new encoder that can integrate edge features, so the



Algorithm 1: The pseudocode of training.
Input: the original graph G, the snapshot windows

T
Output: the encoder ENC, the RNN model RNN,

the decoder DEC
G0,G1, . . . ,GT = Separate(G, T );
while ! early stop requirement do

loss = 0;
for i← 0 to T do

Xtrain
i , Atrain

i , F train
i = data split(Gi);

Z ′
i = ENC(Xtrain

i , Atrain
i , F train

i );
Zi = RNN(Z ′

i);
Âi = DEC(Zi);
loss = Lap + β · LDEC ;

end
loss.back propagate;

end
return ENC, RNN, DEC;

Algorithm 2: The pseudocode of testing.
Input: the original graph G′, the snapshot windows

T ′, the encoder ENC, the RNN model
RNN, the decoder DEC

Output: the edge classification results Y s
G0,G1, . . . ,G′T = Separate(G′, T ′);
Y s = [];
for i← 0 to T ′ do

Xtest
i , Atest

i , F test
i = data split(Gi);

Z ′
i = ENC(Xtest

i , Atest
i , F test

i );
Zi = RNN(Z ′

i);
Âi = DEC(Zi);
Y = SCORE(Âi);
Y s.append(Y );

end
return Y s;

generated node embedding would have richer information
about the host/network interactions. Below we describe the
structure of the encoder, and then give some guidance on
how to generate node features, edge weights, and edge
features from the log data.
Encoder structure. Our design is inspired by MPNN
[21], which uses a message-passing layer to merge edge
features from the neighborhood nodes into node embedding.
In particular, our encoder is composed of two types of
layers which can take edge weights and edge features as
input separately, and we name them EF(·) and EW(·). EF(·)
uses a trainable function to aggregate the features from the
neighboring nodes and EW(·) is designed similarly as GCN,
which can process node features and edge weights. More
formally, given a node u ∈ V ,

EF(Xu, Fu,v) = σ(Xu +
∑

v∈N(u)

Xv ·Mθ(Fu,v)) (7)

TABLE 3. THE ENCODER STRUCTURE. X_DIM EQUALS TO THE
NUMBER OF NODES AND F_DIM EQUALS TO THE NUMBER OF

FEATURES.

Layer Name Size
1 EW (·) (x_dim, 32)
2 EW (·) (32, 32)
3 drop out + activation function
4 EW (·) (32, 32)
5 drop out + activation function
6 EF (·), MLP (32, 16), (f_dim, 8)
7 activation function

where Xu denotes the node features of u, Fu,v denotes
the edge feature between the edge (u, v), N(u) denotes
the neighborhood of u, Mθ(·) aggregates the feature values
passed by the neighborhood nodes, which can be simple a
Multilayer perceptron (MLP), and σ denotes the activation
function.

EW(X,W ) = σ(D̂− 1
2WD̂− 1

2XΘ) (8)

where D̂ is the diagonal degree matrix to normalize the edge
weights’ matrix W , Θ represents the trainable parameters,
and σ denotes the activation function, which is set to Tanh.

In our experiment, we use three EW(·) layers and one
EF(·) layer. The structure is shown in Table 3.
Node features. Node features Xt can be simply initialized
as the IDs (e.g., machine IDs assigned by the domain
controller) if there is no other node information. The types
of the nodes can also be considered, e.g., machine type like
server or workstation, if they are logged, and converted into
one-hot encoding and combined with the IDs.
Edge weights. For a pair of nodes, multiple events could
happen in a snapshot Gt and they will be merged to form
one edge. The frequency of events could be useful to detect
abnormal behaviors (e.g., a sudden high-volume of authen-
tication requests can be resulted from brute-force logins),
which could fill edge weights. Given all edges of Et, its
edge weights Wt can be computed and normalized as:

Wt = σ(
Ct

std(Ct)
) (9)

where σ denotes the sigmoid function, Ct is the frequency
of all edges in Et, and std is the standard deviation.
Edge features. When merging events to an edge, the event
fields could be aggregated to generate edge features. Given
that an event can have numerous fields, feature selection
should be done before presenting to the encoder. Our em-
pirical evaluation suggests using the item frequency from
the categorical fields (e.g., the number of logins initiated
by normal users, administrators, and operating systems) and
raw values from the numerical fields (e.g., the traffic volume
of each network flow) can be used. The edge features Ft for
Et can be computed and normalized similarly as Equation 9:

Ft = [σ(
St,0

std(St,0)
), σ(

St,1

std(St,1)
), ..., σ(

St,n

std(St,n)
)] (10)

where n is the number of used features and St,i (0 ≤ i ≤ n)
has the values for feature i in Et.



4.4. Decoder and Loss

The decoder defined in Equation 5 aims to reconstruct
Ât from Zt, but the attack-agnostic decoder chosen by the
prior work could lead to inaccurate detection results (Issue-
B in Section 3.1). We consider the attack characteristics
that are generic to customize the decoder. One prominent
characteristic is that to attack a target, the attacker would
need to exploit the entities that is reachable to it (e.g., using
a compromised client as the stepping stone to hack into
the server), hence the neighborhood nodes could also be
suspicious.

Based on such insights and previous works in graph
anomaly detection [22], we design a random sampling
aggregation operation from each node’s neighborhoods to
update the node embeddings. We acknowledge that this
aggregation method might not be optimal as it does not
exploit the differences of neighborhood nodes, and we plan
to improve this design in the future. Equation 11 defines a
new decoding operation based on Equation 5.

Ât = DEC(Zagg
t ) = Softmax(MLP(Zagg

t )) (11)

where Zagg
t = S ∗ At ∗ Zt. S is an identity matrix that

samples s neighborhoods from the adjacency matrix At per
row. s is a constant representing the sample number. Similar
to the basic decoder, we use cross-entropy (CE) to compute
the loss of the decoder (LDEC) on the sampled edges.

LDEC = −log(p(At|Ât)) (12)

Average Precision (AP) loss. Under CE, LDEC still
optimizes the GSA model under the accuracy metric. As de-
scribed in Issue-A in Section 3.1, precision is a more suitable
metric for imbalanced security datasets, and the learning
objective can be designed to maximize Area under Precision
and Recall curve (AUPRC). Directly maximizing AUPRC
incurs high overhead, and recently, Qi et al. proposed to
use a surrogate Average Precision (AP) loss to approximate
AUPRC [23]. We adapt the AP loss into ARGUS, and follow
the implementation of LibAUC [51].

Specifically, the surrogate loss for AP can be written as
the equation below:

Lap =
1

nPt

∑
ei∈Pt

−
∑n

s=1 I(ys = 1)l(es; ei)∑n
s=1 l(es; ei)

(13)

where Pt are positive edges in Gt, nPt
is the number of

positive edges, ei is one positive edge, n is the number
of all edges in Gt, es is any edge in Gt, ys is the edge
label (ys = 1 means positive edge), I is the identity
function that outputs 1/0 when the argument is true/false.
l(es; ei) = (m − (f(ei) − f(es)))

2 is the smooth squared
loss that approximates I(f(es) ≥ f(ei)), with f being the
prediction model (i.e., GSA) and m being the margin param-
eter. Minimizing Lap is tractable by rewriting Equation 13
into a finite-sum of compositional functions and performing
SGD-style or Adam-style stochastic optimization [23].

Finally, we combine Lap and LDEC and assign different
weights to them, according to the dataset characteristics

(e.g., the highly imbalanced dataset would require a large
weight on Lap). The final loss function becomes:

loss = Lap + β · LDEC (14)

where β is the parameter configured by the operator.

5. Evaluation

In this section, we present a comprehensive evaluation of
ARGUS. We first describe the experiment settings, including
the evaluation metrics, baseline models, and the running en-
vironment. Then, we describe our experiment on LANL and
OpTC dataset separately, with comparison to the baseline
models and the analysis of each component, etc. Finally,
we evaluate the efficiency of ARGUS, which is described in
Appendix A.3 due to page limit.

5.1. Settings

Evaluation metrics. Different from the standard link pre-
diction that consider the positive edges as true positives (TP)
and negative edges as true negatives (TN), given that our
goal is to detect attacks (or malicious events), we define
the edges containing at least one malicious event as TP,
and the edges containing all normal events as TN. The
malicious event is defined as any redteam event described
in the ground-truth datasets or documents of LANL [24]
and OpTC [25], and this is the same approach adopted
by the baseline models like Euler and PIKACHU. False
positives (FP) and false negatives (FN) are defined as the
edges misclassified as malicious and normal respectively.
With TP, TN, FP and FN defined, we compute the following
metrics:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

FPR =
FP

TP + FP

(15)

We also compute AUC for comparison with other works, but
this number should be read with a grain of salt. Due to that
the malicious and normal events are highly imbalanced, high
AUC might yield misleading estimation of the effectiveness
of a GSA (“Base Rate Fallacy” of [52]). For example, Euler
has over 0.99 AUC, but the ratio between FP and TP is over
180x (see Section 3.1). Like Euler, we also compute average
precision (AP) [53], which is defined as:

AP =
∑
n

(Rn −Rn−1)× Pn (16)

where Rn and Pn are the precision and recall at the n-th
threshold. AP provides a better assessment than AUC on
the imbalanced dataset. In addition to effectiveness, we also
measure the efficiency of ARGUS, focusing on the time of
training and testing.



TABLE 4. THE STATISTICS OF THE LANL DATASET FOR THE FIRST 14
DAYS.

Dataset Nodes Events Time
LANL-auth 15,610 239,558,591 14 days
LANL-flows 11,504 114,584,051 14 days
LANL-redteam 288 627 14 days

ARGUS Hyper-parameters. The encoder hyperparameters
have been described in Table 3. The RNN model is a two-
layer GRU. The learning rate is 0.01. The node embedding
size is 16. For the weight in the loss function, β is 0.01
for LANL and 0.5 for OpTC based on their data distri-
butions. For AP Loss, the margin parameter m is 0.8. Qi
et al. uses a moving average estimator for the stochastic
optimization [23], and we set its moving average γ to 0.01
for LANL and 0.1 for OpTC.
Baseline models. We consider 4 GSA models as base-
line to compare with ARGUS, including Netwalk [35],
PIKACHU [15], VGRNN [13], and Euler [14], which are
all designed for anomaly detection on DTGs and providing
source code. We also consider two non-GSA models, in-
cluding Local Outlier Factor (LOF) [54] and Isolation Forest
(IF) [55], which were also compared by other GSAs [10].
More details of these models and the parameters are shown
in Appendix A.1.
Computing Environment. We run the experiments on a
workstation which has an AMD Ryzen Threadripper 3970X
32-Core Processor and 256 GB CPU memory. ARGUS runs
on CPU by default and in Section A.3, we assess the
performance under GPU implementations, and our GPU
is NVIDIA GeForce RTX 3090 with 24GB memory. We
use PyTorch 1.10 and Python 3.9.12 as environment when
building ARGUS. The OS is Ubuntu 20.04.2 LTS.

5.2. Evaluation on LANL

Dataset and pre-processing. Our first experiment eval-
uates the effectiveness of ARGUS on the LANL datasets,
which has been briefly described in Section 2.4. We chose
LANL because it was also evaluated by Euler, our primary
baseline model. We perform attack detection on LANL-
auth to identify the malicious authentications simulated by
the redteam (recorded by LANL-redteam). We follow the
implementation of Euler [45] to filter out the events without
the keyword “NTML” (short for Windows New Technology
LAN Manager [56]), which are unrelated to user authenti-
cation. To construct DTG, we split the LANL-auth data by
1-hour (3,600s) snapshots, and all events sharing the same
source and destination nodes are merged into an edge. Later
we will also evaluate the impact of different snapshot sizes.
Similar as to Euler, we use the snapshots of the first 42
hours for model training, as after then the first redteam event
is observed. Each snapshot has an average of 7,957 edges
and we leave out 5% edges for validation. The remaining
snapshots are used for testing (all edges are tested).

Within each snapshot, we use node index to construct
node features Xt, normalized event frequency to construct

edge weights Wt (described in Section 4.3). Since our
encoder is able to ingest edge features, we select 3 features
from LANL-auth events, by the frequency of user-initiated,
computer-initiated and anonymous logins, which can be
learned from the first letter of the source user@domain
field (U, C or A). By closely examining the other datasets
provided by LANL, we found LANL-flows, which records
the network flows coming through the central routers, are
potentially useful in providing network traffic statistics.
Hence, for each edge generated from LANL-auth, we search
for the related events in LANL-flows, aggregate them by
the pair of source and destination, and extract 7 additional
features: the number of flows, the mean of flow duration,
the standard deviation of flow duration, the mean of packet
count, the standard deviation of packet count, the mean of
byte count, and the standard deviation of byte count. When
examining LANL-flows, we found its daily volume drops
significantly (by around 80%) after Day 14, and we found
the LANL data provider admitted that there are issues with
data collection [57]. Hence we test the snapshots within the
first 14 days. Table 4 lists the statistics for this subset. Com-
pared to the full datasets shown in Table 2, 83.7% (627 out
of 749) redteam events are kept, and 88.44% (15,610 out of
17,649) nodes are included. The other baseline approaches
are tested with the same training and testing snapshots.

TABLE 5. EVALUATION ON LANL DATASET. THE SNAPSHOT SIZE IS
3,600 SECONDS.

Model AP AUC Precision Recall FPR
IOF 0.0002 0.5048 0.0000 0.0023 0.0093
IF 0.0003 0.6969 0.0000 0.0137 0.1901
Netwalk 0.0029 0.7195 0.0000 0.0251 0.1908
PIKACHU 0.0038 0.9517 0.0040 0.9590 0.0413
VGRNN 0.0125 0.9660 0.0107 0.2232 0.0036
Euler 0.0448 0.9810 0.0318 0.8565 0.0045
ARGUS 0.3227 0.9983 0.2171 0.8269 0.0005

Overall effectiveness. In Table 5, we show the effectiveness
of ARGUS and compare it to other baseline methods. In
terms of AP, ARGUS is able to reach as high as 0.3227,
which is 7.2x from Euler and 25.8x from VGRNN. We
also note that both Euler and ARGUS achieve very high
AUC (0.9810 and 0.9983), but a vast difference exists in
AP, indicating AUC is imprecise in measuring the detection
effectiveness. For the non-GSA models like IOF and IF,
their AP are even lower (0.0002 and 0.0003) than every
GSA model.

AP is averaged across precision and recall under differ-
ent thresholds, as shown in Equation 16. In Table 5, we also
report classification result under a threshold that is learned
from the validation set. For ARGUS, reasonable precision
(0.2171) and high recall (0.8269) can be achieved. In this
case, 1,309 FP is triggered, which leads to very low FPR
at 0.0005. In the meantime, 363 TP are detected. Though
Euler and PIKACHU are able to detect more TP (376 for
Euler and 421 for PIKACHU), a much higher number of FP
is triggered (11,464 for Euler and 104,311 for PIKACHU),
which are 8.76x and 79.68x compared to ARGUS. The
precision-recall curves of all methods are shown in Figure 4.



Taking a close look at the FN, we found that many of
them can be potentially detected at the later investigation
stage. For instance, out of the 76 FN of ARGUS, 30 of
them share the same source and destination with the TP. As
mentioned by [14], LANL might also have a data labeling
issue that the redteam events were not all logged (e.g.,
malicious activities following compromise events are not
tracked). We also found some TN are potentially TP: we
search LANL-auth for the edges with the same user ID,
source and destination as the malicious edges but contained
by different snapshots, and found 986 such edges. In Ap-
pendix A.2, we provide more details about the detection
results separated by snapshots.

Figure 4. Precision-recall curves on LANL.

Different configurations. Here we investigate the impact of
different configurations of ARGUS on the overall effective-
ness. We first evaluated the different choices of activation
functions that are used by the encoder. We choose this
component because the final edge scores heavily depend on
the activation functions, and a good function should disperse
the scores to a wider range, so it is easier to separate the
benign and malicious edges by threshold. In particular, we
tested the four most common activation functions: Tanh,
Softmax, ReLU, and Sigmoid. In Table 6, all four activation
function have high AUC (around 0.99) and low FPR. In
addition to Tanh, Softmax and ReLU also has around 0.28
and 0.24 AP which are over 0.1 higher than Sigmoid.

We also assessed the impact of snapshot size, as the
larger the snapshot, the more edges will be included, which
can provide more contextual information of the attack and
benign activities, but also increase the risk of wrong pre-
dictions, as more events will be merged and resulting in
lower edge/event ratio. We found that 3,600 achieves the
best result, and decreasing the snapshot size leads to a much
lower AP (from 0.3227 to 0.0680 of 360).

5.3. Evaluation on OpTC

Dataset and data preprocessing. OpTC is another
log dataset that has been used to evaluate DTG-based

TABLE 6. ARGUS WITH DIFFERENT ACTIVATION FUNCTIONS (THE
SNAPSHOT SIZE IS 3,600 SECONDS) AND DIFFERENT SNAPSHOT SIZE

ON LANL (THE ACTIVATION FUNCTION IS TANH).

AP AUC FPR

Activation

Tanh 0.3227 0.9983 0.0005
Softmax 0.2780 0.9979 0.0008
ReLU 0.2426 0.9973 0.0006

Sigmoid 0.1338 0.9950 0.0005

Snapshot (s)

3,600 0.3227 0.9983 0.0005
1,800 0.1128 0.9930 0.0004
900 0.0550 0.9963 0.0015
360 0.0680 0.9968 0.0008

Figure 5. Precision-recall curves on OpTC.

GSAs [15], and we evaluate ARGUS on it and compare
with the other GSAs. As described in Section 2.4, we
use the network flows, so the hosts that are distinguished
by IP addresses are used as nodes and the flows between
pairs of hosts are merged into edges. We construct node
features Xt and edge weights Wt in the same way as LANL.
Though a network event contains fields like pid (process
ID), ppid (parent process ID), source port, destination port
and image path, we found it is difficult to extract useful
statistical features from them. For example, pid and ppid
are categorical fields but their ranges are very large. Hence,
we did not use edge features in this experiment.

For the snapshot size, we set it to 360 seconds, which
is much smaller than the default of LANL, because the
number of nodes in OpTC (814) is much smaller than LANL
(15,610) and the event frequency between a pair of hosts is
much higher. Setting a large snapshot size will merge too
many events. In the end, 1,680 snapshots are derived for the
whole week. We use the first 5 days’ snapshots for training
and the remaining 3 days’ snapshots for testing.
Overall effectiveness. Table 7 lists the overall effective-
ness5. We found ARGUS is able to improve AP of Euler
by 0.17 (increased from 0.6426 to 0.8074) and AUC of
Euler by 0.013 (0.9840 to 0.9970). ARGUS has a higher FP

5. Our evaluation results of PIKACHU are worse than their paper (e.g.,
0.99 AUC). One reason might be that data pre-processing is different (the
code repo does not include this part [58]).



TABLE 7. EVALUATION ON OPTC. THE SNAPSHOT IS 360 SECONDS.

Model AP AUC Precision Recall FPR
Netwalk 0.0901 0.7435 0.0259 0.3957 0.1690
PIKACHU 0.0285 0.9760 0.0370 0.8383 0.2479
VGRNN 0.1267 0.9473 0.0806 0.0493 0.0064
Euler 0.6426 0.9840 0.5273 0.6897 0.0070
ARGUS 0.8074 0.9970 0.2960 0.9647 0.0261

(2,795 vs 753) and higher TP (1,175 vs 840) over Euler, and
we can balance the FP and TP of ARGUS by adjusting the
classification threshold. Overall, the result shows ARGUS
is able to achieve good performance consistently across
datasets of different characteristics. The other GSAs except
Euler are performing much worse, with the highest AP at
0.1267 by VGRNN. The precision-recall curves are shown
in Figure 5.
Different configurations. In Table 8, we show the impact
of the activation function, and ReLU achieves 0.015 better
AP than Tanh but the differences are much smaller. We
also show the impact of different snapshot sizes. ARGUS
achieves the best performance at 360s snapshot size. Inter-
estingly, less FP is triggered at a larger size, though the
number of edges is much lower, suggesting some malicious
events are hidden in merged edges. In Appendix A.2, we
provide a case study to justify the need for DTG modeling.

TABLE 8. ARGUS WITH DIFFERENT ACTIVATION FUNCTIONS
(SNAPSHOT SIZE IS 360) AND DIFFERENT SNAPSHOT SIZES ON OPTC

(ACTIVATION FUNCTION IS TANH).

AP AUC FPR

Activation

Tanh 0.8074 0.9970 0.0261
Softmax 0.7834 0.9881 0.1022
ReLU 0.8221 0.9969 0.0256

Sigmoid 0.8064 0.9869 0.0563

Snapshot (s)

3,600 0.0238 0.9470 0.000
1,800 0.5836 0.9875 0.0000
900 0.5398 0.9885 0.0014
360 0.8074 0.9970 0.0261

5.4. Ablation Study

To understand the contribution of each proposed compo-
nent in ARGUS, we conduct an ablation study by switching
one component with a standard method at a time and mea-
suring the differences in effectiveness. The standard methods
are cross-entropy (CE) loss (the same as Euler), GCN (2
layers, the same as Euler), LSTM, and inner product (IP, the
same as Euler), which replace the AP loss, MPNN-based
encoder, GRU-based RNN layer, and MLP-based decoder
(in Equation 11) used by ARGUS. Table 9 and Table 10
show the results on the LANL and OpTC datasets.

For LANL, we observe the proposed encoder makes the
biggest contribution, as the AP drops from 0.3227 to 0.0832
after replacing it with the standard GCN encoder that only
processes node features and edge weights, suggesting edge
features are vitally important. Prominent performance drops
are also observed when using LSTM for RNN and CE for

loss. The impact of the MLP-based decoder is insignificant
when switching to IP (less than 0.001 AP difference).

For OpTC, though edge features are not used, replacing
the encoder with GCN still causes a large drop in AP (from
0.8074 to 0.3856), and the major reason could be that the
baseline GCN structure is simple (only two layers). On the
other hand, using LSTM for the RNN layer and CE for the
loss could actually increase AP, though the improvements
are both below 0.1. The similar observations have also
been made by Euler: e.g., the default GCN+GRU setting
performs best under dynamic link detection but worse than
SAGE+LSTM under dynamic link prediction (Table VI of
[14]).

TABLE 9. THE ABLATION STUDY OF ARGUS ON LANL.

Encoder Decoder RNN Loss AP AUC FPR
✓ ✓ ✓ ✓ 0.3227 0.9983 0.0005
✓ ✓ ✓ CE 0.2676 0.9966 0.0011
GCN ✓ ✓ ✓ 0.0832 0.9929 0.0033
✓ ✓ LSTM ✓ 0.1691 0.9910 0.1653
✓ IP ✓ ✓ 0.3207 0.9985 0.2344

TABLE 10. THE ABLATION STUDY OF ARGUS ON OPTC.

Encoder Decoder RNN Loss AP AUC FPR
✓ ✓ ✓ ✓ 0.8074 0.9970 0.0261
✓ ✓ ✓ CE 0.8121 0.9966 0.0267
GCN ✓ ✓ ✓ 0.3856 0.9873 0.0217
✓ ✓ LSTM ✓ 0.8718 0.9970 0.0063
✓ IP ✓ ✓ 0.7537 0.977 0.0020

5.5. Data Poisoning Attack

In Section 4.1, we assume the attacker cannot tamper
with the training dataset. Here we revise this attacker’s ca-
pability and study how “data poisoning” attack [59], through
which the attacker manipulates the edges and/or nodes in
the training set, impacts the effectiveness of ARGUS. We
examine the attack on the LANL dataset and simulate two
poisoning strategies. Table 11 lists the results.

First, we simulate a powerful attacker who is active in
both training and testing stage (called “cross-stage attack”),
and the malicious activities (i.e., authentications) conducted
in the training stage are not detected (labeled as benign). The
attacker does not need to know the exact training window
(i.e., which data samples in the event stream are drawn for
training). Specifically, we extend the training period to cover
the first K malicious edges in testing, and we set K to 5,
10, and 20. It turns out AP drops significantly (e.g., from
0.3227 to 0.1281 when K = 5), and the main reason is that
the redteam keeps running the same authentication attempts.
For example, 15 malicious edges in the training set also
appear in the remaining testing set, when K = 20.

Parallel to our work, Xu et al. examined data poisoning
attack against GSAs and evaluated it against the LANL
dataset (with Euler as the GSA) [60]. They proposed to
inject “covering accesses” during training that is against the
learning objective of a GSA model, assuming the attacker



has white-box access to the model [60]. For each malicious
event, we name its source and destination nodes as malicious
nodes. N covering edges are injected for each malicious
node to other nodes in the last training snapshot, and we
select the covering edges randomly instead of using the
optimization-based method like [60], as we did not have
access to its source code (we call our version “edge injection
attack”). We examined different N values (2, 5, 10, 100),
and found AP drops significantly (from 0.3227 to 0.1464)
when N = 100. However, given that the average edge num-
ber for that snapshot is only 0.62, injecting many authentica-
tion events can expose the attacker under a simple anomaly
detector that counts the event frequency. Interestingly, Xu
et al. argued that “poisoning attack is still more difficult
to launch” because only AUC is measured (0.997 AUC
dropped to 0.988 when changing N from 0 to 100) [60],
but this conclusion is questionable when considering AP.

To notice, the adaptive attacker can attack GSAs in meth-
ods other than data poisoning. One such method is “evasion
attack”, which manipulates the graph structure at the testing
stage. Wang et al. showed that graph-based classification
can be fooled under optimization-based attacks [61], and
recently Goyal et al. tested the methods against GSAs of
simpler designs (e.g., Unicorn that computes Jaccard Simi-
larity between subgraphs [62]). It is unclear how attackers
can manipulate the malicious behaviors to evade UNRL-
based GSAs and we plan to investigate this issue.

TABLE 11. THE RESULTS OF POISONING ATTACK ON LANL. “CSA”
AND “EIA” MEAN “CROSS-STAGE ATTACK” AND “EDGE INJECTION

ATTACK”.

Attack AP AUC FPR

CSA, K=

0 0.3227 0.9983 0.0005
5 0.1281 0.9947 0.0012
10 0.042 0.9877 0.0025
20 0.0248 0.978 0.0013

EIA, N=

2 0.2749 0.9983 0.0008
5 0.2785 0.9983 0.0009
10 0.2780 0.9984 0.0010
100 0.1464 0.9738 0.0027

6. Discussion

Lessons learned. Overall, our study shows though UNRL is
a promising technique to ease the development and deploy-
ment of GSA (e.g., by training without labeled malicious
events and learning structural features without manual fea-
ture engineering), the current implementations still incur a
high error rate, especially on realistic datasets collected by
large organizations. We argue that the UNRL-powered GSA
cannot be completely agnostic to the characteristics and
distribution of the attack events. We also found some metrics
can be misleading when the evaluation is carried out on
the security datasets which are noisy and imbalanced (e.g.,
AUC is only presented by Log2Vec [11] for the evaluation
on LANL, though it is over 0.9), and we suggest the metrics
should be selected more carefully.

Concept drift. After the UNRL solutions, including AR-
GUS, are deployed, the distribution of the normal behaviors
in the testing data can be shifted away from the training
data, which could increase FPR over time. This issue is
called concept drift, and to combat this issue for security
applications, recently, a few approaches like CADE [63],
TRANSCENDENT [64] and OWAD [65] were proposed to
detect concept drift, explain the drift, and retrain the model
when necessary. In fact, OWAD has been tested on the same
LANL dataset, and it shows the AUC can be increased
by up to 0.07 (with GL-LV/GV as the anomaly detection
model [10]). We expect similar results can be observed on
ARGUS.

Alignment of log files. Due to the inaccuracy of com-
puters’ clocks and delays between when an event happens
and gets recorded, the timestamps of logs are not always
accurate. When merging multiple datasets like LANL-auth
and LANL-flows, such “time skew” issue can cause the logs
to be misaligned after the merge. This issue was observed
by the creator of the LANL dataset and partially addressed
by using the centralized logging server to write the times-
tamps [66]. Since ARGUS merges events in a snapshot of
360s to 3600s, the impact of time skew is further limited.

Limitations and future work. Here we list the limita-
tions of ARGUS currently and outline the plan for future
improvement. 1) Though ARGUS is able to outperform
Euler, the SOTA method handling DTG, by a large margin
when evaluating on LANL (e.g., 0.32 over 0.04 in AP), its
performance should still be improved for a production envi-
ronment. For instance, its precision is only 0.22 when recall
reaches 0.8. One direction we will explore is generating
different embeddings when a node is presented as a source
node and context (or destination) node, as they have different
meanings in the security setting (e.g., the attacker compro-
mises a source node to attack a destination node that is not
yet compromised). Yet, deep-learning-based encoders like
GCN do not inherently support this setting [12], and a new
encoder design is needed. On the other hand, as explained in
Section 5.2, there are data labeling issues in LANL, which
makes it nearly impossible to achieve high precision and
high recall. 2) We use a subset of LANL for evaluation
because the collection of network flows encountered issues
after 14 days. Such collection issues are likely to happen in
many organizations, and the trained model should be able
to handle data corruption or missing when it is deployed.
One solution could be synthesizing the replacement data and
the approaches based on neural data augmentation can be
employed [67]. 3) ARGUS is able to capture the abnormal
behaviors on DTG, and is potentially applicable to the
precise detection of lateral movement. However, we ac-
knowledge that there exist more advanced attack techniques
like ShadowMove [68] that can hide the malicious activities
completely into legitimate communications, which will not
introduce any new links. In this case, ARGUS might be
evaded and other information about the hosts needs to be
leveraged. 4) ARGUS’s operation requires parameter tuning
and we found different parameters are needed when the



datasets are different (e.g., LANL and OpTC). This might
be inevitable given that even their embodied attack types are
different. Our ablation study also shows not all components
are effective for LANL and OpTC (e.g., replacing the default
GRU with LSTM increases AP by about 0.08, shown in
Table 10). How to infer the best parameters and components
automatically from a sample of data can be an interesting
direction to explore. 5) Since the encoder ARGUS relies
on GCN, it can only conduct transductive learning [12]
(explained in Section 2.2). Inductive learning might be nec-
essary when the nodes in an organization frequently change,
which requires a new encoder design. 6) Euler has better
efficiency comparing to ARGUS, due to ARGUS uses a more
complex encoder. Though we argue that improving detection
accuracy is more important when the accuracy is low, we
believe ARGUS can be optimized to be more efficient, e.g.,
by leveraging parallel workers like Euler.

7. Related Work

Graph Learning for Security. In Section 2.1, we have
reviewed the studies that apply UNRL for security. Here
we review other researches that apply graph learning for
security analytics, which can be characterized into three
directions:

1) Graph traversal and tracking: to identify the root cause
of a security incident (e.g., data breach) on a graph
that models network-level or host-level activities [69],
provenance tracking [70], [71] has been proposed and
shown promising results in tracing Advanced Persis-
tent Threat (APT) [1]. Initially, provenance-aware sys-
tems [69] are designed to take queries (e.g., SQL)
from analysts, compress/summarize matched graphs
(e.g., through event abstraction [3], [4], execution par-
tition [72], [73] and graph summation [74]), and return
the results to analysts for further queries or attack
confirmation. Recently, some works have investigated
automated detection of the threats on the provenance
graph, and the methods include tag propagation to
label nodes [75], [76], sequence learning to identify
the attack paths [5], attack attribution [6], and attack
subgraph extraction [77]–[80].

2) Graph isomorphism and similarity testing: it is critical
to find instances of malicious patterns in graphs of the
monitored data. Both traditional graph isomorphism al-
gorithms [79], [81] and graph learning approaches [82],
[83] have been proposed, as well as methods to help
derive patterns of interest in searching [84].

3) Graph mining: turning graph elements and structures
into vectors enables neural networks to conduct clas-
sification and anomaly detection tasks such as mal-
ware detection [85]–[87], sybil detection [88]–[90],
malicious website detection [91], [92]. Early works
examined approaches based on message passing, like
loopy belief propagation (LBP) and random walk (RW)
for collective classification [93], which aims to classify
the unlabeled nodes as positive or negative simultane-
ously with the help of the labeled nodes on the same

graph. Most of the previous works assign edge weights
empirically, and Wang et al. proposed to learn the edge
weights through an optimization-based approach [94].
UNRL was recently leveraged to build security an-
alytics models in an unsupervised manner. And our
study aims to largely improve its detection accuracy
for practical use in production environments.

Temporal Graph. The security research that works on
temporal graphs has been reviewed in Section 2.3. In appli-
cations other than security, temporal link prediction has been
applied to the traffic prediction [95], fraud detection [96],
etc., which typically combine GCN and RNN [20], [97],
[98]. Singer proposed to use joint optimization to adapt
static node embedding to different time points [99]. Beladev
et al. learned graph representation per time step in the
temporal graphs sequence [100]. Xu et al. proposed the tem-
poral graph attention (TGAT) layer to efficiently aggregate
temporal-topological neighborhood features [101]. Kumar et
al. proposed JODIE which employs two RNNs to update the
embedding and model the future interactions between nodes
(e.g., users and items) [102]. Zheng et al. proposed TSNet
to jointly learn temporal and structural feature, but the focus
is on node classification [103]. Wen et al. proposed TREND
which is built upon a Hawkes process-based GNN to achieve
inductive learning on temporal graphs. [104] The log data
handled by security analytics present unique challenges, e.g.,
large-scale and unbalanced distribution between benign and
malicious events, and we design ARGUS to tackle them.

8. Conclusion

In this paper, we proposed ARGUS, a graph security
analytics (GSA) that embodies unsupervised network rep-
resentation learning (UNRL) to detect attacks from large-
scale log datasets at high accuracy. Carefully designed to
incorporate security domain knowledge in its components
like encoder, ARGUS steps up and goes beyond generic
UNRL to better model security graphs for attack detection
and other security applications. Evaluated on two large-scale
datasets, LANL and OpTC, ARGUS shows a clear advantage
over other state-of-the-art GSAs like Euler by a large margin
in average precision. With the development of ARGUS, we
hope to advance practical GSA deployment in enterprises
with manageable false positives to combat cyber-attacks.
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Appendix A.

A.1. Details of the Other Security Analytics

In Section 3.1, we listed the effectiveness of 4 UNRL-
based GSAs on LANL. Here we provide details about their
designs and the parameters we set for the comparative study.

• Euler [14] uses GCN as encoder to generate node
embedding on individual snapshot and GRU to accom-
modate temporal dynamics. Its decoder is the inner
product decoder as shown in Equation 2. The loss
function is a standard CE loss over the ground-truth



TABLE 12. THE COMPARISON BETWEEN ARGUS AND OTHER GSAS. AUC, AP AND FPR ARE MEASURED ON LANL.

System DTG Edge Feature Encoder Loss RNN AUC1 AP1 FPR1

GL-LV/GV [10] × × Continuous-Bag-of-Words Noise Contrastive Estimation × - - 0.0090
Log2Vec [11] × × Word2vec CE × 0.91 - -
Netwalk [35] × × Network walk Autoencoder Clique Embedding Loss × 0.7195 0.0029 0.1908
PIKACHU [15] ✓ × GRU-based Autoencoder CE GRU 0.9517 0.0038 0.0413
VGRNN [20] ✓ × GCN Variational Lower Bound GRNN 0.9660 0.0125 0.0036
Euler [14] ✓ × GCN CE GRU 0.9810 0.0448 0.0045
ARGUS ✓ ✓ MPNN AP + Community GRU 0.9983 0.3227 0.0005
1 The results for GL-LV/GV and Log2Vec are obtained from the papers, while the remaining results were generated after we run their code.

and reconstructed adjacency matrices. Euler is able to
distribute the DTG snapshots into multiple workers for
parallel processing, under its scalability goal. We use
the code from [45] and use its default parameters
(learning rate = 0.01, threshold weight = 0.6).

• PIKACHU [15] splits the graphs into sequences with
random walk and uses Skip-gram to train the node
embedding. A GRU-based autoencoder is used to learn
long-term information. We use the default parameters
listed in the paper [15] (embedding dimension=64,
walk length=500, context size for training=5, learning
rate=0.001, neighbor number=10).

• Log2Vec [11] proposes 10 rules to build heterogeneous
graphs from different types of logs and uses random
walk and word2vec to generate node embeddings and
detect abnormal edges.

• GL-LV/GV [10] aims to detect lateral movement
from authentication logs. It uses random walk and a
Contiuous-Bag-Of-Words model to generate node em-
beddings and identifies low-probability authentication
events via a learned logistic regression link predictor.

In Section 5, we include VGRNN and Netwalk as
baseline models in addition to Euler and PIKACHU, and
we provide details about them below. EvolveGCN [97] is
another model that performs temporal link prediction but
it exceeds the limit of our CPU memory when running on
LANL, so it was not selected as a baseline. In Table 12 we
summarize the aforementioned GSAs.

• VGRNN [20] uses GCN as the encoder for a DTG
snapshot and stacks it up on a GC-LSTM to cap-
ture the temporal relations. It was also compared by
Euler [14] and we use the same model parameters
(learning rate=0.01, hidden embedding size=32).

• Netwalk [35] performs network walk (a variation of
random walk) to generate node embedding, and uses a
reservoir sampling strategy to update the embedding.
A newly arrived nodes or edges that do not belong to
any cluster will be considered as anomalies. We use
the code from [105], and use its default parameters
(learning rate=0.01, epoch=30, number of clusters=3).

Except GSAs, we also include two other non-GSA meth-
ods as baseline models.

• Local Outlier Factor (LOF) [54] is a non-graph
anomaly detection approach that extracts relative local
densities from a sample and compare the sample with
its neighbors for anomaly detection. To notice, this

method was compared with GL-LV/GV [10] and 1-
hot encoding was applied on the authentication logs to
generate features. In this paper, we use the same edge
features extracted by ARGUS instead. The parameters
set by [10] are used (neighbors=2).

• Isolation Forest (IF) [55] is another non-graph model
compared with GL-LV/GV [10]. It uses simple decision
trees to identify the abnormal samples. We use the
default parameter (random state=0).

A.2. More Evaluation Results

Results by snapshots on LANL. If ARGUS is deployed
as a near real-time defense that issue alerts to the security
analysts after each snapshot, it should avoid triggering too
many FPs in one snapshot. In other words, “smoothness”
should be achieved on the detection results. Hence, we log
the TP, FP, and FN triggered by ARGUS in each snapshot
(in total 311 snapshots) and show them in Figure 6. We
found none of the snapshots would trigger more than 39
FP. In most cases (280 out of 295 snapshots), less than
10 FP is triggered. In some snapshots, the attack activities
are intensive (e.g., 38 malicious edges observed in snapshot
171), and ARGUS is able to capture most of them (33 TP
captured).

In Figure 7, we draw the number of edges observed in
each snapshot, and we found there exists a vast divergence
among snapshots (the number ranges from 5,836 to 16,352).
High FP and FN also have strong relations with the edge
numbers. On the other hand, clear temporal patterns are ob-
served across snapshots: weekends and outside-of-working
hours see lower edge numbers. By modeling such patterns
during training (e.g., adding snapshot weights to RNN based
on their time windows), ARGUS might achieve better results.

Then, we compute the detection statistics by days and
found the average FP per day is 85, suggesting the extra
workload for analysts is moderate.
Case study of OpTC. Here we demonstrate how ARGUS is
able to pinpoint the attack traces at finer grain based on DTG
modeling. We select the snapshots that are related to the sim-
ulated “Plain PowerShell Empire” campaign by the redteam,
as documented in [25]. The attackers first connected to
a host to download the attack tool “PowerShell Empire
stager”, and then launched privilege escalation to collect
user credentials by Mimikatz. After that they conducted port
scanning, and set their foothold on another host with WMI.



Figure 6. TP, FP, FN of each LANL snapshot (1 hour). Snapshot is numbered by their timing order. TN is not drawn because it is much larger than TP,
FP and FN, and it is close to the number of edges.

Figure 7. Number of edges of each LANL snapshot (1 hour). Snapshot is numbered by their timing order.

Figure 8. Case study of “Plain PowerShell Empire” redteam attack in OpTC. Lines in red dash represent the redteam events.

Finally, they are able to reach the domain controller and
harvest users’ password hashes with lsadump.

Figure 8 draws three representative snapshots.
132.197.158.98 is the C2 (Command and Control)
server that keeps the attack tool. It was connected by clients
like 142.20.59.4 and 142.20.59.188 in snapshot
1625 and 1626. However, these connections happened
before the first redteam event (attack tool downloading),
which suggests these connections could be benign (e.g.,
the C2 server was not fully owned by the attacker and
the clients viewed the normal content). ARGUS is able to
correctly detect the attack events in snapshot 1631 that
matches timestamps of the redteam events. If we choose
static graph modeling rather than DTG, it will incur high
efforts for the analysts to locate the attack events.

A.3. Efficiency

Here we compare the training and testing efficiency of
ARGUS to Euler. Euler is designed to process snapshots
in parallel, which leveraged the distributed framework of
PyTorch [106]. We are more interested in how Euler and
ARGUS performs at the algorithmic level, so we we set the
number of workers and threads of Euler both to 1. We focus
on the overhead of the machine-learning components and
leave out the latency caused by data loading. We tested on
the LANL dataset with 3,600 seconds snapshot size, and
Euler’s training time is 164.86 seconds while the testing
time is 77.09 seconds. For ARGUS, if we use CPU for
both as a fair comparison (Euler’s source code uses CPU),
because the overhead of processing edge features, ARGUS
runs slower than Euler with the training and testing time
at 636.55 and 81.74 seconds. To notice, 42 hours and 12



TABLE 13. TRAINING AND TESTING TIME OF ARGUS UNDER
DIFFERENT SNAPSHOT SIZES FOR LANL. FOR GPU-IMPLEMENTATION

OF ARGUS, WE USE THE CROSS-ENTROPY (CE) LOSS.

Snapshot (s) Training (s) Testing (s)
3,600 (Euler) 164.86 77.09
3,600 (GPU) 5.81 97.04
3,600 (CPU) 636.55 81.14
1,800 (CPU) 800.48 90.50
900 (CPU) 933.71 238.83
360 (CPU) 2,141.5 445.35

days LANL data are used for training and testing, and we
believe the overhead is acceptance under such data volume.
If we run ARGUS on GPU, only 5.8 seconds are needed for
training, and the testing time is slightly increased because all
the data need to be loaded to the GPU from CPU memory.
To notice, due to the memory limitation of our GPU (24
GB), supporting the full loss of Equation 14 runs out of
memory. Hence, we change the loss to cross-entropy (CE)
loss, which reaches 0.2676 AP and is still higher than Euler.

To assess the impact of snapshot size, we vary the size
from 3,600 to 1,800, 900, 360 seconds. The result is listed
in Table 13, which shows the snapshot size has a big impact
on the training time and testing time, as more than 3x slow-
down was observed when reducing the snapshot size from
3,600 seconds to 360 seconds.

Appendix B.
Meta-review

B.1. Summary of Paper

This paper aims to address performance issues encoun-
tered by unsupervised network representation learning tech-
niques, which stem mainly from the attack-agnostic learning
objective and other factors that are specific to graphical data.
The paper proposes ARGUS, which incorporates domain
knowledge about security analysis into learning. Empirical
results show that the approach offers superior performance
to both graphical and non-graphical neural network base-
lines.

B.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

B.3. Reasons for Acceptance

1) A systematic analysis of prior approaches that sheds
light on why they perform poorly on real-world data

2) Introduces a new unsupervised graphical security anal-
ysis method that builds on these findings

3) Illustrates how security domain knowledge can be in-
corporated into learning

4) Experimental results provide compelling evidence that
supports the effectiveness of ARGUS’s design


