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Abstract—Graph-based Network Intrusion Detection Systems
(GNIDS) have gained significant momentum in detecting sophisti-
cated cyber-attacks, such as Advanced Persistent Threats (APTs),
within and across organizational boundaries. Though achieving
satisfying detection accuracy and demonstrating adaptability
to ever-changing attacks and normal patterns, existing GNIDS
predominantly assume a centralized data setting. However, flex-
ible data collection is not always realistic or achievable due to
increasing constraints from privacy regulations and operational
limitations.

We argue that the practical development of GNIDS requires
accounting for distributed collection settings and we leverage
Federated Learning (FL) as a viable paradigm to address this
prominent challenge. We observe that naively applying FL to
GNIDS is unlikely to be effective, due to issues like graph
heterogeneity over clients and the diverse design choices taken
by different GNIDS. We address these issues with a set of novel
techniques tailored to graph datasets, including reference graph
synthesis, graph sketching and adaptive contribution scaling,
eventually developing a new system ENTENTE. By leveraging
the domain knowledge, ENTENTE can achieve effectiveness,
scalability and robustness simultaneously. Empirical evaluation
on the large-scale LANL, OpTC and Pivoting datasets shows
that ENTENTE outperforms the SOTA FL baselines. We also
evaluate ENTENTE under FL poisoning attacks tailored to the
GNIDS setting, showing the robustness by bounding the attack
success rate to low values. Overall, our study suggests a promising
direction for building cross-silo GNIDS.

I. INTRODUCTION

The techniques and scale of modern cyber-attacks are evolv-
ing at a rapid pace. More high-profile security breaches are
observed against large organizations nowadays. One prominent
attack strategy is Advanced Persistent Threat (APT) [1]], which
establishes multiple attack stages and infiltrates multiple or-
ganizational assets through techniques like lateral movement.
As a popular countermeasure, many organizations collect
network logs (e.g., firewall and proxy logs) and perform
intrusion detection on them [2]. To more precisely capture
the distinctive network communication patterns of the attack,
a promising approach is to model the network logs as a graph
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and apply graph-based algorithms to detect abnormal entities,
interactions or communities. We term such system Graph-
based Network Intrusion Detection System (GNIDS), and we
observe that the recent works [3]], [4]], [5], [6] prefer advanced
graph models like graph autoencoder (GAE) [7] to build their
systems, showing much higher detection accuracy over the
traditional NIDS and capabilities of detecting sophisticated
attacks like lateral movement [3]].

Regulation compliance concerns for GNIDS. Given the
sensitive nature of network logs, such as revealing commu-
nication patterns of employees and organizations [8]], privacy
regulations have to be followed when training GNIDS models
with logs from multiple regions. For example, Menges et al.
state that SIEM needs to be compliant with Europe’s General
Data Protection Regulation (GDPR) [9]], which covers the data
processing and transfer “within and between private companies
and/or public bodies in the European member states”. Outside
of Europe, Singapore’s Personal Data Protection Act (PDPA)
prohibits using data for purposes beyond its original intent
without explicit individual consent [10], creating barriers for
training models on network logs.

In fact, the data collection capabilities of a cyber-security
company have already been restricted under data privacy
regulations. For instance, Palo Alto Networks (PANW) offers
a Strata Logging Service that enables enterprises to send on-
premise firewall logs to the cloud for centralized analysis
and management. However, PANW explicitly states that if
regulations mandate data residency, customers must ensure
that logs are stored in region-appropriate cloud instances to
comply with jurisdictional boundaries [L1]. In such cases,
logs cannot be aggregated across regions, making centralized
analysis on logs impractical. Similarly, Microsoft’s Windows
Defender XDR stores customer data, such as alerts, in regional
Microsoft Azure data centers (e.g., EU, UK, US), and its
documentation confirms that cloud tenants cannot be relocated
across regions once created [12]. Our communication with
product representatives verified that cross-region data central-
ization is unsupported.

Federated Learning for GNIDS and ENTENTE. The
aforementioned compliance issue calls for a new paradigm that
allows the development of GNIDS over geographically dis-
tributed logs while aligning with various privacy regulations.
One promising solution is Federated Learning (FL), which has
gained prominent attention from academia and industry [13].
In essence, FL allows the individual data owners (e.g., a device



owner or an organization) to keep their data on premise and
jointly train a global model by exchanging parameters of local
models. Given its successes in addressing privacy concerns
of data collection [13], we pivot the research of developing
a practical FL-empowered GNIDS and term our new system
ENTENTE.

We argue that ENTENTE should satisfy three main design
goals: effectiveness (similar effectiveness as the GNIDS trained
on the entire dataset), scalability (the overhead introduced by
the FL mechanism should be small and a large number of
FL clients should be supported) and robustness (maintaining
detection accuracy against attackers who compromise the FL
procedure). Since the data to be processed by GNIDS usually
have imbalanced classes (e.g., malicious events are far less
than the normal events) and non-IID (not independent and
identically distributed) across FL clients, based on our survey,
unfortunately none of the existing FL methods are able to
achieve these goals altogether. For instance, sharing neigh-
borhood information through Fully Homomorphic Encryption
(FHE) could mitigate the accuracy loss on the non-IID clients’
graphs [14]], but doing so will introduce prominent overhead.
Clipping the clients’ contributions can curb the poisoning
attack [15], but the training convergence and model accuracy
will be affected adversely [16].

Is it possible to build a federated GNIDS that achieves
effectiveness, scalability and robustness all together, rather
than sacrificing one goal for another?

We answer firmly to this question by designing a new
Federated Graph Learning (FGL) protocol for GNIDS. 1) We
found that by sharing a small piece of clients’ information, i.e.,
the aggregated node number, the central parameter server can
effectively initialize the clients’ initial weights, and mitigate
the impact of non-IID clients. Such information is often
already accessible within an organization so no extra privacy
leakage will be introduced. We instantiate this idea with a new
FL bootstrapping stage based on reference graph synthesis and
graph sketching, which only involve lightweight computation
on the parameter server and FL clients. 2) We found that each
client can self-adjust its contribution based on the divergence
between client-to-global models, and we developed a new
technique termed adaptive contribution scaling (ACS) to in-
stantiate this idea. 3) The attacker needs to scale up the model
updates to effectively poison the trained global model. Since
the clients’ weights are adjusted under ACS already, we can
bound the model updates by tweaking ACS. Interestingly, such
a combination enables dynamic clipping, which can address
the limitation of static clipping [16l]. Through theoretical
analysis, we formally prove that the iteration-wise difference
shifting is bounded under ACS, and convergence rate is still
bounded. This new theoretical result suggests our protocol
could be useful for other FGL applications aiming to achieve
robustness on non-IID clients.

Evaluation of ENTENTE. We conduct an extensive evaluation
on ENTENTE, focusing on its effectiveness in detecting abnor-
mal interactions between entities. We adapt ENTENTE to two
exemplar GNIDS, namely Euler [4] and Jbeil [3], as they em-

body quite different designs. We choose three real-world large-
scale log datasets, OpTC [17]], LANL Cyberl (or LANL) [18]
and Pivoting [19] for evaluation and simulate different client
numbers. In summary, ENTENTE can boost the performance of
both GNIDS models on all the datasets. On OpTC, ENTENTE
outperforms all the other baseline FL. methods and even the
non-FL version (the GNIDS is trained using all data) with
over 0.1 increase of average precision (AP). On LANL and
Pivoting, when link prediction is conducted by Jbeil, high AP
and AUC can be reached by ENTENTE (over 0.9 in most
cases), for both transductive learning and inductive learning
modes. On LANL when Euler is used, given only hundreds of
redteam events are used for edge classification, the AP is low
for all FL methods, but ENTENTE still outperforms the other
methods in most cases.

We also consider the robustness of ENTENTE under adaptive
attacks and consider model poisoning [20] as the main threat.
We develop a new poisoning attack that scales up the model
updates [20] and adds covering edges [21] to the GNIDS
setting, by replaying malicious edges from the testing pe-
riod to the training period. Since ENTENTE integrates norm
bounding when adjusting clients’ weights, the attack success
rate is bounded to a very low rate, e.g., less than 10% when
attacking Euler+LANL. Without norm bounding, not only does
attack success rate increase, but the FL training process might
not even finish when the attacker scales the model updates
by a very large ratio. Overall, our study shows promise in
addressing the data sharing concerns in building GNIDS in
practice.

Contributions. We summarize the contributions of this paper
as followd}

e We propose a new system ENTENTE that can train a
GNIDS model without requesting data sharing among
departments/ organizations, under the framework of FL.

o We address the threats like non-IID client graphs and
adaptive attackers with novel techniques like reference
graph synthesis, graph sketching and adaptive contribu-
tion scaling. We also formally prove that the convergence
rate is bounded.

o« We conduct the extensive evaluation using large-scale
log datasets (LANL, OpTC and Pivoting), and the result
shows ENTENTE can outperform other baselines in most
cases.

o We release the code at |https://github.com/uci-dsp-lab/
ENTENTE.

II. BACKGROUND

A. Graph-based Network Intrusion Detection

(GNIDS)

Network logs collected by network appliances like firewalls
and proxies have been extensively leveraged to detect various
cyber-attacks, including APT attacks [1]. Many graph-based
approaches have been developed in recent years and we
term them Graph-based Network Intrusion Detection Systems

Systems
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(GNIDS). At the high level, for each log entry, the GNIDS
extracts the subject and object fields (e.g., host) as nodes,
and fills the edge attributes using the other fields (e.g., the
instruction contained in the network packet). In Figure I} we
illustrate an example of a graph generated from network logs
collected by different organizations (or clients).

Data Collector
Of Client 1

new.com:80

Data Collector
Of Client 2

attacker

Data Collector
Of Client 3

Fig. 1. An example summarized from the day 1 attack campaign in the OpTC
dataset [17]. The attacker first connects to machine0201 and downloads
the PowerShell attack tool. Then it pivots to machine machine0401 and
machine0660 with the Windows WMI command. Finally, the attack spreads
to other machines. The attacked machines can belong to multiple organizations
(or clients). Graphs can be constructed separately from the logs collected by
different clients.

On top of the graph data, GNIDS can perform anomaly
detection with a trained model. The relevant works can be
divided by their classification targets: sub-graphs (e.g., a graph
snapshot), nodes (e.g., a host) and edges (e.g., interactions
between hosts). In order to accurately model the patterns
in the graph data, most works choose a Graph Neural Net-
work (GNN). One prominent technique is graph autoencoder
(GAE) [1], which uses a graph encoder to generate node
embedding and a graph decoder to reconstruct a similar graph.
The downstream tasks like edge classification can be done by
generating edge scores from node embedding and comparing
them with a threshold. In Section [[V] we elaborate the com-
mon design choices of GNIDS models when describing the
workflow of ENTENTE.

Noticeably, a relevant line of research is provenance- or
host-based intrusion detection system (PIDS or HIDS) [23],
[24], which detects intrusions on the host log graph. In
Section we discuss this line and the potential changes
to our system ENTENTE for adaptation.

B. Federated Learning

Federated Learning (FL) is an emerging technique to allow
multiple clients to train a model without revealing their private
data [25], [26]. FL relies on a central parameter server to train
a global model under multiple iterations. At the start of each
iteration ¢, the server transmits a global model (w;) to a set of
clients (1,...,K) and they train local models (w},. .., wX)
from w;. Then the clients transmit the local models to the
server to average their differences (e.g., FedAVG on model
parameters [260]) and generate a new w; .

FL has two main deployment settings: horizontal FL and
vertical FL [13]]. For horizontal FL, the clients’ datasets have
a large overlap in the same feature space but little overlap in
the sample space (e.g., every client owns the same type of
network logs of its sub-network machines). On the contrary,
vertical FL assumes the clients have a large overlap in the
sample space but little overlap in the feature space (e.g., each
client collects a unique type of logs for all organizational
machines). In this work, we focus on horizontal FL, which
has been studied more often [[13]]. We also focus on the cross-
silo FL setting, in which a small number of organizations
participate in the entire training process [27], rather than the
cross-device FL setting, in which many user-owned devices
selectively participate in different training iterations.
Federated Graph Learning (FGL). Initially, FL was devel-
oped for tasks related to Euclidean data like image classifi-
cation [26]. Recently, FL has been applied to non-Euclidean
data like graphs [28]], [29], and these works are termed under
Federated Graph Learning (FGL). Under the horizontal FL
setting, the graph data is partitioned across clients, where each
client has a sub-graph with non-overlapping (or little overlap-
ping) nodes. A prominent challenge for sub-graph FL is the
heterogeneity between clients’ subgraphs, such that the sizes
and topology are vastly different between subgraphs. While
there are general solutions to address the data heterogeneity
issues under FL [30], [31], some solutions are customized
to sub-graph FL [32], [33]. For example, FedGTA proposed
a topology-aware optimization strategy for FGL [32], but it
requires heavy changes on the design of existing graphical
models.

Alternatively, some works propose to amend each subgraph
with some information shared by other clients or server [34],
[I35], [36]]. For example, the server in FedGL asks the clients to
upload node embeddings to generate a global pseudo embed-
ding [34]. FedSage+ asks the clients to train a neighborhood
generator jointly [35]. However, there is no guarantee that the
shared information will not leak more clients’ information
(e.g., node embedding can lead to inference attacks [37]).
To mitigate the privacy concerns, cryptographic primitives
and/or differential privacy have been tested to amend the
subgraph in a privacy-preserving way [14], [35]. For example,
FedGCN allows a client to collect 1-hop or 2-hop averaged
neighbor node features from clients with Fully Homomorphic
Encryption (FHE) [14]. However, significant computation and
communication overhead will be incurred. In this work, we



develop a new FGL technique to tackle the subgraph hetero-
geneity issue and apply FL to GNIDS in practice.

III. OVERVIEW

In this section, we first describe the deployment settings of
our system ENTENTE. Then, we demonstrate the goals to be
achieved by ENTENTE. Finally, we describe the threat model.

A. Deployment Settings

We assume an organization consists of multiple sub-
organizations, but it is not always feasible for them to share
the raw logs with each other, e.g., when they are located in
disjoint regions that are governed by privacy laws like GDPR,
as elaborated in Section [l Each sub-organization collects the
logs about the network packets sent to and received by its
controlled machines, with systems like SIEM [38]], and trains
a local GNIDS model to detect past or ongoing attacks by
analyzing the logs. To achieve better detection coverage and
effectiveness, they decide to perform FL to jointly train a
global GNIDS model that can be used by each participating
sub-organization. The same procedure can be taken by multi-
ple independent organizations to train a global GNIDS model.

Here we formally define the entities that deploy our system.
Figure [I] also illustrates the setup.

o A client is the sub-organization that collects logs from its
managed machines and trains a GNIDS model to perform
intrusion detection.

« A parameter server is operated by an entity outside
the clients (e.g., the parent organization of the clients) to
aggregate the clients’ model updates and push the global
model to clients.

« A machine owned by a client is subjected to attacks.
It produces network logs that are collected by the client.
Each machine is also called a node under the client graph.

B. Design Goals and Challenges

When designing ENTENTE, we identify several goals that

should be achieved to enable its real-world deployment.

« Effectiveness. ENTENTE should achieve high detection
accuracy and precision on large-scale real-world logs.
Achieving high precision is more important due to the
imbalanced data distribution in the log dataset [39].
ENTENTE should achieve comparable effectiveness as the
GNIDS trained on the entire log dataset.

o Scalability. The introduced FL mechanisms should be
scalable when training a global model from large-scale
log datasets owned by many clients. The communication
overhead and latency added by ENTENTE on each client
should be small.

« Robustness. In addition to compromising the client ma-
chines, the attacker has the motivation to compromise the
FL procedure. ENTENTE should be able to defend against
such adaptive attacks.

Challenges and solutions. The major challenge is the hetero-
geneity among clients. Previous studies have discovered that
when clients’ data are non-IID (independent and identically

distributed), the effectiveness and robustness of the trained
global model can be significantly degraded [40]. In our case, it
is very likely that each client has divergent subgraphs in terms
of size and topology. As supporting evidence, Dambra et al.
studied the malware encounters using the telemetry data from
a security company, and it shows enterprises in the United
States have more than 5x monitored end-hosts than any other
country [41]].

We found that when clients’ data are non-IID graphs,
none of the prior FL (e.g., FedAvg) or FGL (e.g., FedGCN)
approaches can achieve the aforementioned goals altogether,
as they have to sacrifice one goal for another. For example,
FedAvg is highly scalable but performs poorly under non-IID
data [40]. FedGCN [14] aims to address the effectiveness
challenge on the heterogeneous client data with heavyweight
cryptographic methods, which sacrifices the system scalability.
Norm bounding [15] improves the robustness by clipping
abnormal model updates, but prior research also demonstrated
it will slow down the convergence of FL training and decrease
the effectiveness of the trained model when a static clipping
threshold is used [[16].

Hence, new FGL methods are desired in our setting, and
our key observation is that by sharing a small piece of
information from clients to the parameter server, i.e., the
aggregated amount of nodes, the parameter server can adjust
the clients’ contributions automatically to offset the impact of
non-IID graphs. Besides, a client can perform self-adjustment
of its contribution based on the divergence of client-to-global
model parameters. Since the contributions are dynamically
adjusted, the limitation of defenses like norm bounding can
be remedied. Overall, through new FGL protocols that are
carefully designed around non-IID client graphs, our system
ENTENTE achieves the three design goals all fogether for the
first time.

C. Threat Model

First, we follow the threat model of the other GNIDS (e.g.,
[4], [S]) that though the machines can be compromised, the
network communications are correctly logged by the network
appliances. Hence, log integrity can be achieved. Though it is
possible that advanced attackers could violate this assumption,
additional defenses (e.g., using Trusted Execution Environ-
ment) can be deployed as a countermeasure [42]], [43]], [44].

Second, we assume the central parameter server is honest-
but-curious, which is trustworthy for aggregation but may
be curious about clients’ local data (e.g., communications
between two employees of a sub-organization). To mitigate
privacy leakage, we only allow the parameter server to know
the total number of nodes aggregated from all clients, in
addition to the clients’ model updates required by FL. We
argue that the total node number is often accessible within
an organization: e.g., an administrator can get the list of
users across sub-organizations from the central active directory
server [45]), so no extra privacy leakage is expected. In Sec-
tion we discuss the privacy threats potentially caused by
deploying ENTENTE, including membership inference attack



and gradient inversion attack, and provide preliminary analysis
under the lens of differential privacy (DP).

Finally, we consider the attacker who is able to launch the
poisoning attack by controlling one or more FL clients. The
controlled clients are subject to data poisoning [20] (e.g., the
adversary commands some compromised machines to initiate
covering communications during the training stage) or model
poisoning [20]] (e.g., the adversary manipulates the updates of
local models). In Section we introduce a concrete attack
against GNIDS in the FL setting, and demonstrate ENTENTE
is an effective defense.

IV. DESIGN OF ENTENTE

In this section, we describe ENTENTE in detail. ENTENTE
encompasses GNIDS components that are adapted from the
existing works and FL components that train the GNIDS
models. We highlight FL-related components with “4” as they
are the key contributions of this work. The high-level workflow
of ENTENTE is illustrated in Figure [2] The main symbols and
their meanings are summarized in Table

TABLE I

THE MAIN SYMBOLS USED IN THE PAPER.
Term(s) Symbol(s)
Client number, index K, k
Client graph G*
Client edges, edge &k, ek
Client nodes, node VE, ok
Snapshot number, index T, t
Client snapshot Gk
Client model parameters wh
FL max and current iteration R, i
Weight of a client update rk
Global model after ¢ iterations Wiy 1

A. Local Graph Creation

We assume K clients have deployed the same GNIDS and
they jointly train a global model with FL. Each client is
indexed by k € [1, K]. After the network logs are collected
by client k, a graph G* will be constructed by representing
the event sources and destinations (machines/users/etc.) as
nodes V¥ and their communications as edges £¥. An edge
ek between a pair of nodes v¥ and v§ could contain fea-
tures extracted from one or many events that have both v¥
and v§, and the commonly used features include the event
frequency [4], traffic volume of network flows [3], etc. Each
node has a feature vector, which can be the node type (e.g.,
workstation or server), privilege, etc. [4]

Though it is relatively straightforward to generate a single
static graph from all events [46]], such graph modeling has
prominent issues like the coarse detection granularity and
missing the unique temporal patterns [3]. Recent works advo-
cate dynamic graph modeling that generates a sequence of fem-
poral snapshots [Gy,--- , Gr|, and a snapshot G; (¢t € [1,T))
merges the events in a fix-duration time window (e.g., one
hour) [3], [4]], [S]. ENTENTE generates a dynamic graph by

default, but it can easily be switched to static modeling by
merging the nodes and edges of [GF,--- ,Gk], yielding G*.
#Augmenting local graph. Missing cross-client edges is
a prominent issue for subgraph FL, and previous works
tried to amend the subgraph by exchanging the topological
information among clients, which however led to privacy and
efficiency issues, as surveyed in Section We found that
this problem can be partially addressed under the unique
GNIDS deployment setting, with /-hop graph augmentation.
Our key insight is that the log collectors deployed by a client,
like firewalls, usually record the inbound and outbound cross-
client events automatically [2]]. Therefore, the cross-client
edges can be harvested “for free” from each client’s internal
logs.

Specifically, assume V¥ and £F are nodes and edges of the
snapshot GF of client k. We search the logs to find all entities
that are not contained by V¥ while following the constraints
of VF (e.g., in the same snapshot period), denoted as Vtkc.
Then Vtkc will be added into GF, together with Etkc (the edges
between V' and Vfc).

B. Local GNIDS Training

Node representation learning. On a generated graph snap-
shot Qf, ENTENTE extracts the representation (or embedding)
of each node with a graph auto-encoder (GAE) [, which
aggregates the node’s features and its neighborhood informa-
tion. Graph Convolutional Network (GCN) [47] is a standard
choice [4], which takes the whole adjacency matrix as the
input, but only transductive learning, which assumes the nodes
are identical between training and testing, is supported. In our
setting, the GCN encoder can be written as:

Z} = GCN(X}, A}) (1)

where ZF € R" " is the node embedding generated by
the encoder on GF, XF represents the node features and A¥
represents the adjacency matrix on GF.

To accommodate the new nodes observed in the testing

phase, inductive learning has been proposed, which learns
the neighborhood aggregator to generate node embeddings.
GraphSage [48] is a classic encoder in this case, but re-
cent GNIDS [3] also integrates other encoders like Temporal
Graph Networks (TGN) [49]. The TGN encoder deals with a
continuous-time dynamic graph, and for each time ¢, the node
embedding ZF is generated by a trainable message function,
message aggregator and memory updater.
Temporal learning. The anomalous temporal patterns (e.g.,
a login attempt outside of work hours) provide important
indicators for intrusion detection, and some recent GNIDS [4]],
[3] choose to capture such patterns with Recurrent Neural
Network (RNN), e.g., Gated Recurrent Unit (GRU) under
RNN families. The RNN module can be written as:

[Z¥,...,Z%] = RNN([ENC(GY),...,ENC(GX)]) (2)

where GF = (XF, AF) (t € [1,T]) , ENC is the encoder (e.g.,
GCN), and [ZF, ..., Zk] are the embeddings updated by RNN
after they are encoded from [GF, ..., GE].
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Fig. 2. The workflow of ENTENTE. The client k trains a GNIDS model locally and communicates with the parameter server to jointly learn a global GNIDS

with other clients. Function Sim computes graph similarity.

When TGN is the encoder, the temporal pattern is directly
handled by its memory module, which can be a vanilla RNN
and GRU [49]. Hence, no extra RNN layer is needed.

Both GCN+RNN and TGN encoders (and other encoders
used by GNIDS) are supported by ENTENTE when they are
trained under FL. and we explain this feature in Section
Decoding. On the node representations, the decoder aims to
reconstruct the adjacency matrix with edge scores. The basic
decoder is inner product decoder [4], which can be written as:

3)

where o(-) is the logistic sigmoid function and Pr(A;y, =
1/Z;) is the reconstructed adjacency matrix at time ¢+n given
Zy. The probability at each matrix cell is used as an edge score.
The simplicity of the inner product could lead to prominent
reconstruction loss, and more complex, trainable decoders like
Multilayer Perceptron (MLP) have been used by GNIDS [3],
[S]. We design ENTENTE to support different variations of
decoders as elaborated in Section [V-Cl
Training loss. When training a GNIDS, the weights of
trainable components, including the graph encoder, RNN and
decoder, are updated under a loss function. The typical choice
is cross-entropy loss, which can be written as:

; k
DEC(ZF) = Pr(Al,,, = 112}) = o(2E ZP)

£ = —log(Pr(AF|A})) )

where AF is the adjacency matrix decoded from node embed-
dings.

When the GNIDS is trained with only benign events in
unsupervised learning mode, negative sampling [50] can be
applied to randomly select non-existent data points as the
malicious samples (e.g., non-existent edges [4], [3]).

C. Federated GNIDS Training

We aim to support different GNIDS graph modeling,
downstream tasks, training/testing setup, as described in Sec-

tion [[l[-B] Hence, ENTENTE is designed to augment the exist-
ing GNIDS without heavy adjustment of their components, and
the FGL works that redesign the local models [51], [32] are not
suitable. Based on our survey of existing FL. frameworks, we
are motivated to build ENTENTE on top of FedAVG, because
1) it only needs clients’ model parameters as input, and 2) it
has demonstrated effectiveness when the clients’ models are
GNN [52] and RNN [53]. Since the common GNIDS com-
ponents like node representation learning, temporal learning
and decoding all use the same set of training data, we could
train them independently with FedAvg and update their model
parameters. As such, ENTENTE not only incurs minimum
development overhead, but also achieves similar or even better
effectiveness compared to the original GNIDS, as supported by
the evaluation (Section [V). We also want to point out that the
standard FedAvg workflow leads to unsatisfactory performance
and we elaborate on the key adjustment below.
#Initialization of clients’ weights. FedAVG aggregates the
model parameters of GNIDS components in a number of
iterations as described in Section Its basic version in
one iteration can be represented as:

K .k k
Wip1 = Dy T X Wy

(&)

where ¢ is the current iteration, wf is the local model pa-

rameters of client C that is trained with the global model
of previous iteration w; and its local data, r* is the weight
of client k during aggregation, and w;; is the global model
parameters after aggregation. As described in Section
the clients’ data are non-IID, which has a prominent impact on
the performance of FL algorithms. To tackle non-IID data, one
feasible approach is to assign different weights to the model
updates from different clients, so the impact from clients with
outlying distributions can be contained. Previous works have
used the number of data samples (e.g., images [26]) per client



for weights, but in our case, each client only has one sub-
graph.

We address this challenge with a new method to initialize
the client’s weights based on its graph properties. We min-
imize the communication overhead and privacy leakage by
computing the client’s weights on top of a single reference
graph generated by the parameter server. This reference graph
stays the same for the whole training process and across
clients. Our approach is inspired by Zhao et al., which dis-
tributes a warm-up model trained with globally shared data
and shows test accuracy can be increased [54].

Specifically, we assume the server knows the total number
of nodes (n) from all clients, as justified in Section [[II-C|
When bootstrapping FL, the parameter server generates a
reference graph G"¢/ and distributes it to all clients for
them to compute 7% (Vk € [1,K]). We choose to apply
Barabdsi—-Albert (BA) Model [55]] to generate the reference
graph. BA model is a random graph model for complex
networks analysis [S6]], and it is selected because 1) it only
needs the number of nodes (n) and the number of initial
edges for a new node (m) and 2) it has low computational
overhead (complexity is O(n x m)) when m is small. In
Section [V-A] and Section we discuss the selection of
m and evaluate its impact. The pseudo-code of BA model
is written in Appendix
#Graph sketching. On a client C*, r* will be initialized
based on the graph similarity between its generated graph G*
(aggregated from [GF, ... G%]) and G™*/. Intuitively, the client
with a similar distribution to the global data should receive
high r*. Noticeably, we compute r* locally on the client, so
nothing about the client’s data or distribution will be learned
by the server. This is different from the standard FedAVG,
which computes weights on the server. However, graph sim-
ilarity is computationally intensive: e.g., graph edit distance
(GED) is a fundamental NP-hard problem [57]. Therefore, we
choose to compute the similarity on the graph sketches instead
of raw graphs for efficiency. We use Weisfeiler-Lehman (WL)
graph kernel [58] to capture the graph structure surrounding
each node and compute histogram by nodes’ neighborhood.

Algorithm 1: Weisfeiler-Lehman Histogram (WLH).

Data: Graph G
Result: histograms

labels « InitializeLabels(G);
histograms < Histogram(labels);
for ¢« =1 to MaxlIters do
foreach v in G do
neigh < NeighborLabels(v, labels);
L labels[v] < Hash(Sort(labels[v] + neigh));
histograms <—
Append(histograms, Histogram(labels))
return histograms

In Algorithm [I] we describe how to compute the Weisfeiler-
Lehman histogram (WLH), where InitializeLabels assigns

node degree as a label to each node v, NeighborLabels creates
a multiset containing v’s current label and its neighbors’ labels,
Hash and Sort produce a new label for v. MaxlIters is the
number of iterations, and ith-iteration computes WLH for -
hop neighborhood. We set MaxIters to 3. When applying
Algorithm [T] to our setting, we compute the Jaccard similarity
S¥ . between G* and G"¢/.

g;ref fﬁé;k
Sfac = Gl UGh (6)
#Adaptive contribution scaling (ACS). We follow the Fe-
dAVG client-server protocol to update the model parameters
by iterations. While FedAvg uses the same 7 throughout
FL, we found the client contributions can be more precisely
modeled by dynamically adjusting them towards stability. This
idea at the high level has been examined by prior works like
[59], [60], but we found none of them are suitable under
our setting. First, they require the statistical information of
local data (e.g., local gradients or local samples [59], [60]),
which has been avoided by ENTENTE due to privacy concerns.
Second, the contribution evaluation can be heavy (e.g., Shapley
value by [61]).

Instead, we propose a lightweight and privacy-preserving
method termed adaptive contribution scaling (ACS) to adjust
clients’ weights only using the model parameters. Specifically,
for client C* at the FL iteration i, the parameter server
computes a similarity metric S¥ based on the cosine similarity,
and a distance metric based on L2 distance D¥. The new
client’ weights 7% will be computed with S¥ , S¥ and DF.
r¥ is initialized using S j“ac. ACS models both representational
similarity (with S¥) and distance of local models to the global
models (with D¥), hence presenting a more reliable indicator
for client contributions. To mitigate model collapse incurred
by some clients, the server bounds D¥ by a hyperparameter
w. The definitions of S¥ and D, and the new aggregation
function are listed below.

gr 1D wi xwil| 7
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K
1
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k=1

(©))
where c; and co are two constants to adjust the contributions
from Sy _, SF and DF.

With ACS, ENTENTE is able to achieve better effectiveness
in the evaluation. Moreover, we are able to formally prove
that the iteration-wise difference shifting under Equation [9)] is
bounded, by |<<*L| < ¢1 + cow from Y, wf (FedAVG).
The non-IID data can lead to slow convergence or even
non-convergence in training [40]]. By bounding the iteration-
wise difference shifting through ACS (i.e., adjusting the e
contributions from S% _, S¥ and DF), we are able to address

Jac®
this issue with a formal guarantee.




Theorem 1. Define Sj“ac,Sf, and DY as Equation @ Equa-
tion [/} and Equation [8] respectively. Let c1,co be two hyper-
parameters to adjust the contributions. Global model update
shifting from FedAVG per iteration i is bounded by \%\ <

c1 4 cow for any 0 < Sk, SF < 1.

Jacr ¥

This analytical result shows promise that ENTENTE can be
effective in other applications that use subgraph FL.
#Robustness via norm bounding. Due to the use of FL,
a client deploying GNIDS could be more vulnerable, when
the other clients are compromised and poisoning the global
model. We observe that ACS can be extended to defend against
FL poisoning attack by limiting the contribution of a client,
and we are motivated to integrate norm bounding (NB) [15]
for this purpose. In particular, NB observes that the attacker’s
model updates are likely to have large norms to influence the
direction of the global model. As a countermeasure, the server
can bound the model updates with a threshold M to mitigate
the impact of the abnormal update during aggregation. Our
approach differs from the standard NB by adjusting the bounds
dynamically under ACS.

LEL [15] for sim-

koY —
We define NB(Aw?,,) = LAt o/
plification. The global model is bounded through the updated
difference Aw?,_; derived from local models as Equation

Awk

TABLE II

THE STATISTICS OF THE THREE TESTED DATASETS.
Dataset #Nodes #Events Duration
OpTC 814 92,073,717 8 days
OpTC-redteam 28 21,784 3 days
LANL 17,649  1,051,430,459 58 days
LANL-redteam 305 749 28 days
Pivoting 1,015 74,551,643 1 day

the edge scores and detect the abnormal ones. In this work, we
test ENTENTE over edge-level classification due to its finest
detection granularity. Supporting other detection granularities
is trivial by applying the aforementioned changes.

In Appendix we also summarize the detailed work-
flow of ENTENTE in pseudo-code.

V. EVALUATION

This section describes our experiment setting, including
the evaluated GNIDS, datasets, baseline FL methods, etc.
Then, we consider the effectiveness of ENTENTE and other
baseline FL. methods on different combinations of GNIDS and
datasets. Next, we show that ENTENTE fulfills the scalability
and robustness goals. An ablation study is performed in the
end to understand the impact of individual components and
hyper-parameters.

K
1
Wit1 = Wit Z rExNB(Awr, ;) s.t. Awf, = wF, —w; A. Experiment Settings

k=1
(10)

Like ACS, we present Theorem to confirm that EN-
TENTE has a bounded convergence rate for establishing a
global model. We want to highlight that NB could lead
to slow convergence and worse effectiveness [16]] in the
sacrifice of robustness, but such an issue is well resolved
when combining ACS and NB, achieving dynamic clipping.
In Appendix we further extend Equation [T0]to support
differential privacy (DP), when the privacy of model output is
a concern. Overall, our method entails a strong guarantee that
effectiveness and robustness can be preserved concurrently on
non-IID graph data.

Theorem 2. Assume all Lemmas and constrains [|62]]
reviewed in Appendix For any bounding norm M >
nEG, theoretical complexity of ENTENTE’s convergence is
O(1/(RnE(c1 + c2w)))+O0((er+eaw)n/ K o) +O0(n* B

Uglobal )

D. Intrusion Detection

After the model is trained, for intrusion detection by
GNIDS, different classification granularities can be applied.
Edge classification compares the edge scores generated from
the GNIDS decoder with a threshold, which can be learnt
from validation snapshots, and achieves the finest detection
granularity [4], [3], [S]. Node classification adds a classifica-
tion layer (e.g., softmax) on top of the node embeddings and
compares the probabilities with a threshold [5]. Alternatively,
one can compute a score for the whole snapshot by aggregating

Evaluated GNIDS. We adapt two GNIDS models Euler [4]]
and Jbeil [S] under ENTENTE. We chose them because they
have open-source implementations and both have been tested
on large-scale network datasets. In addition, their architectures
are very different, so we can assess whether the design goals
can be achieved across different GNIDS modes. For instance,
due to the use of GCN, Euler only supports transductive
learning, while TGN used by Jbeil supports both transductive
learning and inductive learning. Both learning modes are tested
by us.

Datasets. We use OpTC, LANL cyberl (or LANL for short)
and Pivoting datasets to evaluate ENTENTE. These datasets
have been used by our baseline GNIDS [4], [5] and thoroughly
tested by other GNIDS like [3], [63]. In Appendix [VIII-C| we
describe the characteristics of the datasets and how we pre-
process them. Table |II] shows their statistics.

All datasets are highly non-IID as reflected in Section
For LANL and OPTC, we observe high standard deviation
on node number in different clients, and in Pivoting, the event
numbers of clients have high standard deviation. Such a dataset
characteristic justifies the design of ENTENTE.

Data split for clients. To simulate the FL process, we need
each client to keep a subgraph of the complete graph. The
prior FGL studies choose to cluster the nodes and generate
local graphs [14], [35]. We follow this direction and leverage
a recent approach Multilayer Block Model (MBM) [64] to
cluster the logs. MBM clusters system events to visualize the
major clusters and major events between different clusters.
For LANL, MBM has built-in support and we use its code



to generate a user-machine bipartite graph and change its
“Number of bottom clusters” to get different numbers of sub-
graphs [65]. For OpTC, we categorize its hosts into internal
and external nodes, like how MBM processes the VAST
dataset (a dataset with simulated network traffic), and generate
sub-graphs like processing LANL. For Pivoting, we follow
similar settings as LANL except that we replace machines
with hosts, and use the protocol and destination port to fill the
node type.
Metrics. For Euler, we define true positive (TP) as a mali-
cious edge in a snapshot that contains at least one redteam
event, and true negative (TN) as a normal edge without any
redteam event. False positive (FP) and false negative (FN) are
misclassified as malicious and normal edges. For Jbeil, we
consider TP as a non-existent edge and TN as an existing
edge while FPs and FNs are misclassified as non-existent and
existing edges With TP, TN, FP and FN defined, we compute
precision, recall and FPR as = PT+P P> T PT} ~ and PF+P 5
The values of precision, recall and FPR depend on the
classification threshold, which might not always be optimal,
e.g., when the validation dataset has a different distribution
from the testing dataset. Hence, we also compute the area
under the ROC curve (AUC) which is computed over all
thresholds. When the malicious and normal edges are highly
imbalanced, AUC might not correctly capture the effectiveness
of a GNIDS, as it measures the relation between TPR and
FPR (see “Base Rate Fallacy” in [39]). So, we also compute
average precision (AP), which is defined as:

AP = Z(Rn - Rn—l) x Py

Y

where R,, and P, are the precision and recall at the n-
th threshold. It measures the area under the precision-recall
curve, which “conveys the true performance” [39] on an
imbalanced dataset. We use AUC and AP as the major metrics
in the percentage format following [66], [67].

Baselines. We consider 5 baseline models to compare with
ENTENTE. Except for Non-FL, all the other models are well-
known FL models or extensions. For them, the cross-client
edges have been added to the local graphs for a fair comparison
with ENTENTE.

o Non-FL. For this method, we assume GNIDS is directly
trained on the whole training dataset and FL is not
involved.

o FedAVG [26]. We use the basic version and use the same
weight for each client.

« FedOpt [30]. FedOpt seeks to improve the convergence
and stability of FL in non-IID settings. It employs adap-
tive local solvers and a server-side momentum term to
achieve faster convergence.

e FedProx [31]. Similar to FedOpt, FedProx is designed
to handle non-IID settings. It introduces a proximal term
to the local optimization objective of each client, which
helps prevent divergence when local datasets are skewed.

¢ FedAVG-N. This is a simple extension of FedAVG, in

which a client’s weight depends on its node numbers n*,

ie., r® = where n is the total node number. r* is

constant across iterations.

To evaluate the impact of norm bounding on GNIDS utility,
we create a variation of ENTENTE, termed ENTENTE-UB, that
performs without Equation [9}

Hyper-parameters. We set m = 5 for Barabasi—Albert (BA)
model. For the client numbers K, we vary it from 2-5 for
LANL, 2-5 OpTC, and 2-4 for Pivoting. We found if we
further increase K, MBM will yield invalid clusters (e.g.,
empty clusters). For Pivoting, because the edge features useful
for clustering are fewer (only the port number can be used),
generating clusters with sufficient node numbers from K > 5
is infeasible. Yet, for the scalability analysis in Section
we tried K = 10,20 for LANL by dropping invalid clusters.
The number of local epochs E is set to 1, except for FedOpt,
for which we set E to 5. For FedProx, we set its parameter p,
which controls the weight of the proximal term, to 0.05. For
the learning rate 7, we set 0.01 for LANL, 0.005 for OpTC
and 0.003 for Pivoting. We use Adam Optimizer. For ACS
hyper-parameters, we set a large c; as 0.8 and a small ¢y as
0.2 to avoid drastic changes on w;11. w is set as 5. For norm
bounding parameter M, we use 5 for Euler and 70 for Jbeil.
We use a larger value of M for Jbeil because the norm w of
Jbeil is empirically large.

Environment. We run the experiments on a workstation that
has an AMD Ryzen Threadripper 3970X 32-core Processor
and 256 GB CPU memory. The OS is Ubuntu 20.04.2 LTS.
We use PyTorch 1.10 and Python 3.9.12 as the environment
when building ENTENTE. We use GPU implementations as
default and our GPU is NVIDIA GeForce RTX 3090 with
24GB memory. For Euler, we use its source code from [68]]
and disable its distributed setting so FL can be implemented.
For Jbeil, we use its source code from [69]].

B. Effectiveness

We evaluate the overall performance of ENTENTE under
the default hyper-parameters and compare the results with the
other baselines. We list the results when K = 3 — 5 and
the results under K = 2 are shown in the Appendix
We assume no poisoning attacks happen here and leave the
evaluation under poisoning attacks in Section
Results on OpTC. In Table we compare the AUC and
AP of different FLL methods, with different client numbers
K. First, we found ENTENTE and ENTENTE-UB clearly
outperform the other FL methods for every K, reaching
74%-84% AP and over 99% AUC. The accuracy loss due
to norm bounding is also acceptable. Simply initializing the
clients’ weights with node numbers (FedAVG-N) boosts the
performance of FedAvg, but not yet reached the same level
of ENTENTE (e.g., 69.96% AP vs 83.29% AP under K = 3).
Though FedOpt and FedProx are designed to address the non-
IID issue of FedAVG, their performance is even worse than
the simple variation of FedAvg (FedAVG-N), suggesting pure
data-adaptive tuning is difficult on imbalanced datasets.

Interestingly, we found that ENTENTE even outperformed
Non-FL, which trains the GNIDS using all data. In fact,
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TABLE III
EVALUATION ON EULER AND JBEIL UNDER DIFFERENT CLIENT NUMBERS K. NON-FL IS LISTED FOR EASE OF COMPARISON. ALL NUMBERS ARE USED

AMONG FL METHODS ARE HIGHLIGHTED RESPECTIVELY. 1 MEANS OUTPERFORMING
NON-FL AND YMEANS THE WORST PERFORMANCE.

OPTC-Euler LANL-Euler
Client# 2 3 4 5 3 4 5
Algorithm AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC
Non-FL 69.96 9876 | 6996 9876 | 69.96 9876 | 6996 9876 | 089 9793 | 089 9793 | 089 9793 | 0.89  97.93
FedAVG 33.69V 9578V | 6572V 98.62V | 66.41V 97.00v | 75.19T 98.66 | 0.71  98.08% | 0.10 1] 022 98411 | 057
FedOpt 66.62 9837 | 6724  99.19%1 | 70.09% 9826 | 72.19% 98.84%1 | 0.65  97.87 | 0.60 0.60 001V 8445
FedProx 64.29  98.07 | 72461 99251 | 73791 97.30 | 71381 9825V 9790 | 0.01v  81.98V | 0.19v I | ooty 8Le4v
FedAVG-N 69.91  99.291 062 97971 | 041  96.80V 96.68
ENTENTE-UB 97.951 97.01
ENTENTE
Client# 2 3 4 5 3 4 5
Algorithm AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC
Non-FL 9647 9751 | 9647 9751 | 9647 9751 | 9647 9751 | 9447 9621 | 9447 9621 | 9447 9621 | 9447 _ 96.21
FedAVG 8854 9185 | 66.77V 7298V | 50.94Y 5184V | 5064V 65.11V | 8730 9134 | 6725V 73.80V | 50.06Y 50.12V | 58.77V 63.86V
FedOpt 59.67V  64.64v | 82.18 8581 | 60.75  67.35 } . . ) . . 6219  69.20 |75.16  82.33
FedProx 61.00 6771 | 6729 7432 | 7089  77.87 7084 7796 | 7652  81.88
FedAVG-N 71.37 7746  [EEECINCEN 6192  68.93 ! 63.85 7131 | 6280  69.77
ENTENTE-UB |[ESENEEZAN 7747 8298 [ENFCIEIVY] [l 9128 92.65 88.09 88.83
ENTENTE

the AP achieved by ENTENTE is 5%-14% higher compared
to Non-FL. This might seem counter-intuitive, but a similar
observation was also documented in a recent work [70], which
shows that if class imbalance and data heterogeneity are well
handled, FL. methods can achieve better results than non-FL
training on the global long-tailed data.
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curve under different FL methods on OpTC

In Figure [3] we draw the precision-recall curve of different
FL methods with one client number (KX = 3) due to space
limit. The precision of ENTENTE outperforms the other sys-
tems at most recall values, and it can reach 0.8 precision at
about 0.9 recall.

Results on LANL.

In Table we show AP and AUC

when LANL is tested with Euler. Since Euler uses the redteam
events as TP, the class distribution is highly imbalanced, and
all systems have low Alﬂ ENTENTE and ENTENTE-UB do
not outperform non-FL but are still the ones closest to non-

>The paper of Euler [4] claims 5.23% (GCN+GRU models) AP on LANL,
but we cannot reproduce the same result with their GitHub code [68]. A few
possible explanations include we use different random seeds and different
hardware (we use GPUs while Euler uses CPUs).

FL in all cases (K = 2 — 5) in terms of AP. We notice
that the trend of AP is somehow opposite to AUC (e.g.,
AP of ENTENTE is higher than FedAvg when K = 3,5)
and this observation can be attributed to the differences in
the training and testing data distribution. In particular, Euler
uses negative sampling to “synthesize” malicious edges during
training. However, the ground-truth malicious edges during
testing have a much smaller volume (only hundreds), which
might not be characterized well by the sampled negative edges.
Correctly classifying malicious edges is a major goal modeled
under AP, but not necessarily so under AUC, when the vast
majority of edges are benign. We acknowledge that the AP
is still low, and discuss this limitation in Section [VI] Yet, we
argue that the improvement over the existing systems is more
important, and ENTENTE achieves this goal.
Table [Tl also shows the result when Jbeil is the GNIDS.
This time, as non-existent edges are considered as TP (ex-
plained in Section [V-A), higher AP is observed. We found
ENTENTE still outperforms the other baselines (except K = 3,
lower than FedAVG-N). Though ENTENTE performs worse
than ENTENTE-UB, the margin is small. The more balanced
class distribution makes non-FL the winner in most cases.
Results on Pivoting. Due to space limit, we present the results
in Appendix In short, we found ENTENTE achieves
the best AP and AUC in the majority of the cases among the

FL methods.

C. Scalability

Following the scalability requirement described in Sec-
tion [lII-B| we measure the communication overhead, latency
and memory consumption caused by ENTENTE.

We first follow the default data split setup (K = 2 — 5).
Regarding latency, when training LANL and OpTC with
Euler, the whole training process takes an average of 116.33
seconds and 706.40 seconds (30 FL iterations till the training
converges for LANL and OpTC) and the testing process takes
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160.99 seconds and 0.6139 secondsﬂ For Pivoting, the training
process takes an average of 314.58 seconds (5 FL iterations)
and the testing process takes 45.963 seconds.

Compared to basic FedAVG, ENTENTE introduces addi-
tional overhead from generating the global reference graph
and updating client weights using WLH and ACS. On LANL
with K = 4, the first step takes 5.47, 7.90, 2.70, and 0.24
seconds across the four clients, while the second step takes
only 0.082 seconds. On OpTC, the first step takes 0.54, 2.25,
0.89, and 25.68 seconds, and the second step takes 0.0058
seconds. On Pivoting, the first step takes 0.049, 0.009, 0.082,
and 0.035 seconds, and the second step takes 0.051 seconds.
The differences between clients are due to their different sizes.
Overall, while ENTENTE adds some computation time, the
overhead remains minor relative to the full training process.

By using FL, ENTENTE also reduces the data transmitted
from client to server when training a GNIDS model, saving
clients’ bandwidth. Take Euler+LANL as an example. The
central server would need to access the 65GB network logs
to train GNIDS. With ENTENTE, only model weights w} are
transmitted by a client k£ in an FL iteration ¢, and only /.94MB
model weights are transmitted in total. Then, we estimate the
per-iteration latency for LANL+Euler (KX = 4) considering
network transmission overhead. Assuming the client upload
link bandwidth is 1 MB/s following the assumption of the
FedAvg paper [26] and the download link bandwidth is 10
MB/s. The server has much larger bandwidth and it will
not throttle clients’ network transmission. The max client
computation time per iteration is 7 s. The latency per iteration
will be # + % +7 = 9.134s. The latency is expected to be
similar for larger K if server bandwidth is much larger than
client’s.

TABLE IV
PERFORMANCE OF LANL+EULER UNDER LARGE K (FROM 5 TO 50).
“TRAINING” IS THE LATENCY OF THE WHOLE TRAINING PROCESS. “CPU”
AND “GPU” ARE THE AVERAGED CPU AND GPU MEMORY OVERHEAD

PER CLIENT.
K | Training(s) AP(%) AUC(%) CPUMB) GPU(MB)
5 138.51 0.67 97.16 1521.21 3343.39
10 224.38 0.77 98.72 866.13 3256.13
200 | 49746 1.05 99.12 522.87 3308.80
50F1| 5111.43 0.20 97.99 1341.30 N/A

Finally, we attempt to increase K to be more than 5 and
test whether ENTENTE can scale up to many clients, and show
the results in Table We evaluate this setting on the LANL
dataset because it contains a large number of nodes (17,649).
For OpTC and Pivoting datasets, increasing K will yield
invalid clusters from MBM as discussed in Section Yet,

30pTC has much larger training latency and much smaller testing latency
than LANL because only 23% of whole OpTC data is used for testing (while
96% for LANL).

4With K = 20, the clustering process results in only 15 valid, non-empty
clients.

SWith K = 50, the clustering process results in only 35 valid, non-
empty clients. This experiment was executed on a CPU due to GPU memory
limitations.
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for large K (e.g., 10, 20, and 50), we found MBM generates
empty clusters, which impedes generating more valid clients,
so we treat the non-empty clusters as clients (9, 15, 35 for
K = {10,20,50}). We found that the training time does
increase notably when K = 9 and K = 15, but this is because
the data loading time is longer (more cross-client edges appear
when K increases). Besides, since we simulate all clients on a
single machine and they share a GPU, the resource contention
also elongates the training time. The training time is expected
to reduce when the clients operate in a real-world distributed
environment. With K = 50, due to GPU memory limitation,
we only test on the CPU environment. AP and AUC are also
recorded, and we find that AP and AUC get better when K
is set to medium values and drop again when K is increased
to 50. We further measure memory consumption introduced
by ENTENTE for a larger number of clients to assess its
per-client overhead. For each run of ENTENTE, we measure
CPU and GPU overhead separately and compute the average
consumption across clients. Specifically, the CPU memory
overhead per client drops from 1521 MB to 522 MB when
K rises from 5 to 20, which is caused by the reduction of
the graph size processed by each client. For K = 50, the
average CPU usage is smaller compared to K = 5 (1521.21
MB vs 1341.30 MB). We speculate the overhead is mainly
caused by the CPU-GPU transfer buffers and data loading
since only the CPU is used in the setting. GPU memory usage
remains relatively stable (around 3.2-3.3 GB), suggesting that
the GPU memory footprint is largely determined by the model
architecture.

D. Robustness against Poisoning Attacks

In this subsection, we evaluate how ENTENTE performs
when FL poisoning attack is conducted by a compromised
client. Recently, a few adaptive attacks against GNIDS were
developed [211], [[71], [[72]. Only Xu et al. [21] tested the
training-time attacks (the other focused on testing-time at-
tacks). So far, none of the prior works considered the ro-
bustness of a GNIDS model trained under FL, and we adapt
the attack from Xu et al. [21] to our setting, which has been
evaluated against Euler on the LANL dataset.

In the original attack of Xu et al. [21]], covering accesses are
added for each malicious edge to avoid exposing the malicious
edges when GNIDS is trained. In our setting, the attacker
can directly inject the malicious edges to the logs after they
are collected by the FL client, under the model poisoning
adversary [20]. As such, the covering edges are unnecessary.
In addition, the attacker can scale up the model updates by a
constant factor 7y to outweigh the updates from other benign
clients [20]].

We present the attack pseudo-code in Algorithm [2| Specifi-
cally, on a controlled client k, the attacker needs to enumerate
all the sub-graphs [G¥,... GK] and compare the source and
destination nodes to its malicious edges EM to be used in
the testing time. An edge will be added when there is a pair-
wise match. We also use a likelihood threshold p to control
the number of injected edges.



Algorithm 2: The proposed poisoning attack. Clien-
tUpdate is the same as Algorithm[4] Each client’s graph
gk = (Vk7 gk)
Data: Number of subgraphs T'; Malicious edges EM;
Likelihood threshold p

foreach client k from the malicious clients do
fort < 1to T do
if random number < p then
for ¢ € EM* do
if e ¢ EF and e.src € VF and
e.dst € V}' then
L GF.add(e);

Sgnd ~v x ClientUpdate(k, w;) to central server in
each FL iteration

Since the poisoning attack conducted by Xu et al [21] is on
Euler+LANL, we focus on attacking the Euler GNIDS. We
test both LANL and OpTC datasets to evaluate the generality
of the attack. In Table we show the attack result when
Euler is trained on LANL under ENTENTE. We select client 4
as the malicious client, which observes 495 malicious edges
(out of 517 total malicious edges). Among these edges, 492 are
cross-client edges, so the attacker has the motivation to poison
the global model to hide their attack from the other clients.
We define “success rate” (SR) as the ratio of malicious edges
that evade detection, which is similar to Xu et al. [21]. We
also count the number of injected edges per malicious edge
(EPM). EPM could be larger than 1 when multiple snapshots
are poisoned. -~ is set to values between 5 and 100 and p is
set to values between 25% to 100%. The row with “-” in
and p in Table [V] shows result without attack. The attack is
more powerful with larger + and p. The result shows ENTENTE
can bound SR to a low number (9.30%)°] When disabling the
norm bounding defense (ENTENTE-UB), the training GNIDS
model observes higher SR, but more importantly, “NaN” (not
a number) error occurs with larger p and . In this case, the
gradient updates accumulate substantial changes, leading to
sudden large adjustments of the global model weights and
gradient explosion. Training the GNIDS model will fail, which
maps to the untargeted attack against FL [73].

Next, we change the malicious client from client 4 to
client 1, 2, and 3 separately, and evaluate the impact. We
also consider the setting of colluding clients and evaluate
ENTENTE when both client 1 and 4 are malicious. We fix the
attack parameters that y=100, p=100%, and “EPM” to 80 to
maximize attacker’s capabilities. The result on LANL is shown
in Table [Vl SR is still low and we found client collusion does
not lead to higher SR against ENTENTE.

6The implementation of Xu et al. sets the classification threshold of Euler
manually and then injects edges according to the threshold. This setting differs
from Euler’s default setting which learns the classification threshold from a
validation set. We follow Euler’s default setting, which might lead to worse
performance than Xu et al.
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TABLE V
ATTACK ON LANL (K = 4). CLIENT 4 IS MALICIOUS. THE UPPER (“E”)
AND LOWER PARTS (“EUB”) OF THE TABLE SHOWS THE RESULT OF
ENTENTE AND ENTENTE-UB.

p v AP(%) AUC(%) SR(%) EPM
- - 072 97.00 -
25% 5 054 9696 930 22
E 50% 5 056 9697 930 40
50% 25 056 9697 930 40
75% 25 060 9699 930 62
100% 100 055 9696 930 80
25% 5 074 9734 114 22
EUB | 50% 25 018 9623 4059 22
100% 100 NaN  NaN - 80
TABLE VI

DIFFERENT MALICIOUS CLIENT ON LANL.

Client AP (%) AUC (%) SR(%)

1 0.37 96.54 6.60

E 2 0.53 96.93 10.48
3 0.55 96.96 8.9

1,4 0.58 96.90 7.48

Regarding OpTC, we choose K = 3 and use client 3 as a
malicious client. Similar as the result on LANL, ENTENTE is
robust even under very large p and ~, as shown in Table
Without the norm-bounding defense, much higher SR is ob-
served or the training process cannot finish.

TABLE VII
ATTACK ON OPTC (K = 3). CLIENT 3 IS MALICIOUS. THE UPPER (“E”)
AND LOWER (“EUB”) PARTS OF THE TABLE SHOWS THE RESULT OF
ENTENTE AND ENTENTE-UB.

p v  AP(%) AUC(%) SR(%) EPM
- - 83.29 99.76 -
10% 2 83.70 99.72 17.65 148
E 25% 5 83.48 99.76 14.61 374
50% 10  85.69 99.78 13.38 764
100% 100 84.91 99.75 1420 1513
EUB 10% 2 7294 99.30 28.24 148
50% 5 NaN NaN - 764
100% 25 NaN NaN - 1513

E. Ablation Study

Due to space limit, we provide the results of ablation study
in the extended version [22l]. The results include impact of
ACS, graph augmentation, clients’ weight initialization, K
and m, comparison between local and global models, and
visualization of MBM clustering.

VI. DISCUSSION

Limitations and future works. First, we admit that the
results of ENTENTE on LANL are far from ideal when the
redteam events are TP. A few reasons have been given in
prior works [4], [3l], including: 1) the labeled malicious events
are too coarse-grained; 2) the malicious activities after the
redteam’s ground-truth events are not tracked; 3) potentially
malicious events on included in the “attack-free” training
period. Second, due to the lack of ground truth of the lo-
cations of each device in the LANL or OpTC dataset, we



choose to run the clustering method MBM [64] to generate
FL clients’ data. The location information is usually not
provided from a log dataset and the IP is also anonymized.
Clustering is our best effort. Similar approaches have been
followed by other FGL works like [14]], [35]], [[74]. Third, we
did not simulate ENTENTE and other baseline FL methods
in a fully distributed environment, i.e., different clients on
different machines. Hence, the actual overhead, especially
network communication, should be higher. However, the extra
overhead caused by ENTENTE over the basic FedAVG method
is introduced during bootstrap and ACS, and Section
shows it is reasonable. Finally, we did not simulate different
FL poisoning attacks (surveyed in Section besides Xu
et al. [21], due to the gap between the attack methods and
the concrete GNIDS setting. We leave the exploration of new
attacks as future work.

Privacy implications of ENTENTE. Due to the usage of
FL, the privacy attacks against FL, like membership inference
attack (MIA) [75] and gradient inversion attack (GIA) [76],
can be utilized to attack ENTENTE. To safeguard the privacy
of FL clients, differential privacy (DP) can be applied to add
noise to the model updates, which hides the existence of a
single instance under FL. As such, DP directly defends against
MIA [77]]. Hatamizadeh et al. evaluated DP against GIA, and
the results show DP-SGD is particularly effective in reducing
the leakage from gradients [[78]. Besides, poisoning attacks can
be deterred by DP, as confirmed by previous studies [15],
[77], [79], [16]. We have conducted a preliminary analysis
regarding the combination of DP and ENTENTE. As detailed
in Appendix [VIII-E| our experimental results suggest that
achieving strong defense against poisoning while preserving
acceptable model utility remains a significant challenge.
Other options for cross-silo GNIDS. Cryptographic tools
such as multiparty computation (MPC) and homomorphic
encryption (HE) can be used to train a model using data from
different regions with strong privacy protection. However,
MPC and HE would incur much higher communication and
computational overheads than FL, making them unsuitable to
train GNIDS on large-scale log data now. CoGNN [80], the
SOTA approach for MPC-based graph learning, communicates
from 1GB to 4GB per epoch on small-scale datasets like
Cora (2,708 nodes and 10,556 edges). The overhead will be
amplified under larger GNIDS datasets. Meanwhile, ENTENTE
transmits 1.94MB model weights in total when training Euler
on LANL, as described in Section Moreover, CoOGNN
only supports static GNN models, but the SOTA GNIDS ex-
plicitly leverage temporal information with non-GNN models
like GRU (integrated by Euler) and TGN (integrated by Jbeil).
As a result, we believe FL is the most suitable approach for
our problem setting at the current stage.

VII. RELATED WORK

Host-based Intrusion Detection (HIDS). This work focuses
on developing privacy-preserving GNIDS, which consume
network logs. Graph learning has also been applied to host
logs. We refer interested readers to a survey by Inam et al.
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[24] for details. Below we provide a brief overview. The main
approach to detect intrusions under HIDS is through prove-
nance tracking [81], which performs variations of breadth-
first search (e.g., under temporal constraints like happens-
before relation [82]]) to find other attack-related nodes given
Indicators of Compromise (IoCs). Yet, provenance tracking
often leads to a large number of candidate nodes to be
investigated [83], and many HIDS add heuristics to reduce
the investigation scope [84], [85]. Another way to reduce the
false positives is to simplify the graphs, e.g., through event
abstraction [86], [87]] and graph summation [88].

Recently, like GNIDS, GNN has also been tested for HIDS
and various embedding techniques have been developed/used,
including masked representation learning [89], TGN [90],
Graph2Vec [91], embedding recycling [92]], root cause embed-
ding [93], etc. It is likely that FL could benefit these HIDS,
but a different operational model and/or learning method is
needed. For instance, cross-device FL instead of cross-silo FL
is a more suitable FL setup.

FL for security. Before our work, FL has been applied
in various security-related settings, like risk modeling on
mobile devices [94], malicious URL detection [93]], detecting
abnormal IoT devices [96], malware detection [97], browser
fingerprinting detection [98], etc. Though FL has been used to
train a model to detect intrusions with system logs collected
from cloud instances [99] and security events collected from
participating organizations [100], the models trained by these
works (i.e., Transformer and RNN) are tailored to the tabular
representation from logs. So far, none of the existing works
have trained a GNN model with FL to detect intrusions from
large-scale network logs.

Security and privacy for FL. Here, we present a more de-
tailed overview of security and privacy issues in FL. Regarding
security, poisoning (or backdoor) attacks are considered as the
major threat [101]], and the previous attacks can be divided
into data poisoning [102f], [103], [LO4]] that manipulates the
clients’ training data and model poisoning [105]], [LO6] that
manipulates the training process or models themselves. In
either case, poisoning will result in deviation of model updates,
and the majority of defenses aim to detect and mitigate ab-
normal deviation [107], [108]], [109], [1L10], [111]. ENTENTE
integrates norm bounding [15] into the training procedure and
the empirical and theoretical results show its effectiveness.

To defend FL against inference attacks [75], [76], differen-
tial privacy (DP) has been applied to FL. The noises can be
added to each training step with DP-SGD [[112]], to the trained
local model [[113] and to the central server [114]]. Recently,
Yang et al. studied the accuracy degradation caused by FL+DP,
and exploited client heterogeneity to improve the FL. model’s
accuracy [115]. We attempted to integrate DP into ENTENTE
but the accuracy drop is prominent. We also believe the privacy
threat and the privacy notions need to be clearly defined under
the GNIDS setting, in order to enable more effective defense.



VIII. CONCLUSION

In this paper, we propose ENTENTE, a new Graph-based
Network Intrusion Detection Systems (GNIDS) backed by
Federated Learning (FL), to address concerns in data sharing.
We carefully tailor the design of ENTENTE to the unique set-
tings of the security datasets (e.g., highly imbalanced classes
and non-IID client data) and variations of GNIDS tasks/ar-
chitectures. With new techniques like weight initialization
and adaptive contribution scaling, we are able to achieve the
desired design goals (effectiveness, scalability and robustness)
altogether. The evaluation of three large-scale log datasets,
namely OpTC, LANL and Pivoting, shows that ENTENTE
outperforms the other baseline systems, even including the
model trained on the whole dataset in some cases. We also
conduct adaptive attacks against ENTENTE with FL poisoning,
and show that ENTENTE can bound the attack success rate
and ensure the training procedure can finish as desired. With
ENTENTE, we hope to encourage more research to address the
data sharing issues in building GNIDS, which is understudied,
and develop better attack and defense benchmarks to evaluate
the robustness of federated graph learning (FGL) systems.
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APPENDIX

A. Algorithm of BA Model
In Algorithm [3] we describe BA model with pseudo-code.

B. Workflow of ENTENTE

In Algorithm ] we summarize the workflow of ENTENTE.
Specifically, w; contains the model parameters for the graph
encoder, temporal encoder and decoder, which are denoted
by ENC(-), TEMP(-) and DEC(-). For the decoder, only the
trainable implementations go through FL. JS(-) is Jaccard
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Algorithm 3: Barabasi—Albert (BA) Model

Algorithm 4: Global model training under ENTENTE.

Data: n (number of nodes), m (number of edges to
attach from a new node to existing nodes)
Result: G (generated graph)

G < InitializeGraph(m);
for i =m-+1 ton do
AddNode(G, i);
k; < Degree(G);
K + ZjGG k‘j;
L + EmptyList();
foreach j € G do
| L.Add(j, k;/K):;
S « RandomSelect(L, m);
foreach v € S do
L AddEdge(G, i,v);

return G

similarity. VL computes gradients on the training loss, and
the same loss function of the GNIDS is used.

C. Datasets and pre-processing

The OpTC dataset [[17] contains the telemetry data collected
under the DARPA TC program [116], during which APT
attacks were simulated on different OSes. The host-level
activities between subjects like processes and objects like files
and sockets were logged. Like Euler [4]], we use the “START”
events related to the “FLOW” objects (i.e., network flows). The
nodes are hosts distinguished by IP addresses and the flows
between hosts are merged into edges. The statistics after this
step are shown in Table [[I, We split the data into 6 minutes
(360s) window. We use the first 5 days’ snapshots (no redteam
events exist) for training and the remaining 3 days’ snapshots
for testing. OpTC is only tested by Euler and we report its
result accordingly.

The LANL dataset [18] contains anonymized event data
from four sources within Los Alamos National Laboratory’s
internal computer network. We use the authentication logs
from individual computers and domain controller servers
following [4], [5]. Simulated redteam attacks are conducted
from the compromised machines. As shown in Table [II} the
malicious events consist of a fairly small portion among all
events, posing a great challenge to GNIDS. Regarding data
pre-processing, like [4]], [S], we only keep the events with
the keyword “NTLM” [117], as other events are unrelated to
authentications. For Euler, the logs are split by a 30-minute
(1,800s) window into snapshots. We use ‘“source computer”
and “destination computer” as nodes and all events sharing the
same pairs of nodes are merged into an edge. The first 42 hours
are used to train the Euler GNIDS. On average, each snapshot
has 7,957 edges and we use 5% edges for validation. After
42 hours, redteam events appear and the following snapshots
are used for testing. For Jbeil, we follow their pre-processing
procedures to use the events that happened during the first
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Data: E is the number of local epochs; 7 is the
learning rate; Number of maximum FL
iterations R; Number of subgraphs 7'; ¢; and co
are two constants.

Result: Global model parameters w;41

Server executes:
Initialize wq;
Gre « BA_Model(n, m);
foreach client k from all clients do
| 5%, + ClientInitialWeight(k, G™/);

for i =1to R do
foreach client k from all clients do
L wf < ClientUpdate(k, w;);

SK DE = ACS(w;, wk);
w;4+1[ENC] « w;[ENC] + XK | (¢; x Sk + ¢y x
SF x DF) x NB(Aw?, | [ENC]) ;
w;4+1[TEMP] + w;[TEMP] + K (¢; x Sk +
co x SF x DF) x NB(Aw#, | [TEMP] ;
if DEC is trainable then

w;+1[DEC] « w;[DEC] + 2K (¢y x Sk .+
L ca x SF x DF) x NB(Awf, | [DEC] ;

if early_stopping(wy, ..., w;41) then
L break:

return w; 1

Function ClientInitialWeight (k,G"¢/):
Generate local graph Gk:
Add cross-client edges to G*:
[GF,...,GE] + separate(GF);
return JS(WLH(GF), WLH(G"¢/)) to server;

Function ACS (w;, wF) :
Compute SX and DF ;
return SX DX to server;

Function ClientUpdate (k,w):
for each local epoch i from 1 to E do
L w <+ w—nVL(w; [GF,...,GE]);

return w to server;

14 days, including 12,049,423 events. Different from Euler,
Jbeil did not use the LANL’s redteam events as malicious
samples. Instead, it injects non-existent edges (i.e., negative
sampling) and conducts link prediction (i.e., predicting an
edge’s existence in testingﬂ We use 70% events for training,
15% for validation and the remaining 15% for testing. For
the transductive learning mode, the training and testing sets
share the same set of nodes. For the inductive learning mode,
30% of the nodes are hidden during the training but unmasked

7Jbeil has another mode that uses a lateral-movement simulator to inject
malicious edges, but this simulator has not been released. We have contacted
the authors and confirmed it.



TABLE VIII
EVALUATION ON PIVOTING WITH JBEIL. NON-FL IS LISTED FOR EASE OF COMPARISON. ALL NUMBERS ARE USED IN THE PERCENT FORMAT. THE

AND THE AMONG FL METHODS ARE HIGHLIGHTED RESPECTIVELY. § MEANS OUTPERFORMING NON-FLL AND YMEANS THE
WORST PERFORMANCE.
Pivoting-Jbeil-Transductive Pivoting-Jbeil-Inductive
Client# 2 3 4 2 3 4
Algorithm AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC
Non-FL 96.26  97.05 | 9626 97.05 |96.26 97.05 |9592 96.87 | 9592 96.87 |9592 96.87
FedAVG 82.07 8870 |68.81v 75.70v | 81.19 87.26 |83.59 89.46 |71.05v 78.06V | 80.80  86.99
FedOpt 81.14 8737 |90.28  93.97 85.70  90.87 | 91.65 94.94
FedProx 81.01 8734 |80.72 86.71 |58.62v 62.56v | 80.58 87.17 | 81.53 87.40 |58.08v 61.99v
FedAVG-N 74.14v  80.64v LRI 72.82v 78.81V 92.41
ENTENTE-UB | 93.55 96.00 | 89.72 9391 91.46  94.86 | 87.53 90.96

during testing, following Jbeil’s setting.

The Pivoting dataset [19] comprises network flow data,
collected over a full working day under a large organizational
setting, exclusively representing internal-to-internal commu-
nications among hosts. The simulated pivoting activities for
lateral movement are considered malicious. It is only tested
by Jbeil and we follow its setting and use the first 1,000,000
events, which correspond to 698 nodes. Again, the data is split
into 70% for training, 15% for validation, and the remaining
15% for testing. Link prediction is conducted and we test both
transductive and inductive learning modes.

D. More Results on LANL, OpTC and Pivoting Dataset

Table shows the results on the Pivoting dataset when
Jbeil is the GNIDS. We observe that ENTENTE achieves the
best AUC in most cases () = 2,4 for transductive mode and
K = 3,4 for inductive mode). FedOpt outperforms ENTENTE
when K = 2 and ENTENTE-UB outperforms when K = 3
for transductive but the differences are small (less than 5%).
Though non-FL achieves the best AP and AUC in nearly all
cases, the margins over ENTENTE are also small (less than 7%
AP and 4% AUC).

E. Differential Privacy for ENTENTE

Specifically, Equation [I0] can be adjusted to integrate DP as
written below:

K
1

Wip1 = Wit 7 > rk x NB(Awf,,) + N(0, MZ0?) (12)
k=1

We are able to support weak DP [15] and CDP [79]], [16]
defenses with Equation [I2] For theoretical completeness,
ENTENTE realizes the DP guarantee parameterized by €

O(KMgysy/Rlog(1/8)/0).
Theorem 3. Consider that K clients collaboratively train
a model in ENTENTE for R rounds. Through Equation [I2)

ENTENTE realizes (K Mgys+\/Rlog(1/d)/0,0)-DP.

Their difference is the value of My. Weak DP extends norm
bounding by adding a Gaussian noise under small variance
o to each model update, and the value of Mg is relatively
smaller than expected as the standard DP. CDP requires the
noise level to be proportional to the sensitivity.

F. Review of Supporting Lemmas
Lemma 1 (Lipschitz Gradient). The function Fy, is L-smooth
Sor any k € [K] such that,

|VFe(z) = VE(I < Lz —yll, Ya,yeR? (13)

Lemma 2 (Bounded Local Variance). The function F}, has
Olocal-bounded local variance such that,

B[V [fx(w, 2)l; = [VE ()} ]| = oigear
for all w € R, j € [d], and k € [K].

Lemma 3 (Bounded Global Variance). The function Fj has
Oglobal-bounded global variance such that,

(14)

K
=S IVIF )]~ V@)L < By (15)
k=1

for all w € R and j € [d).

Lemma 4 (Bounded Gradients). The gradients of function
fr(w, 2) is G-bounded such that,

[V fr(w,2)]; <G,V jeld (16)

for any k € [K],w € R? and z ~ datay.

Due to space limit, all the proofs are elaborated in the
extended version [22].

G. Artifact Appendix

The artifact evaluation process is designed to validate the
repeatability and usability of the results presented in the
research paper "ENTENTE: Cross-silo Intrusion Detection on
Network Log Graphs with Federated Learning.” The paper
introduces ENTENTE, a novel federated learning framework
designed for Graph-based Network Intrusion Detection Sys-
tems (GNIDS) for regulation compliance. The primary objec-
tive of ENTENTE is to achieve effectiveness, scalability and
robustness simultaneously. The evaluation process comprises
two main components: training and testing the IDS. As a
valuable resource, the authors provide a GitHub link that
grants access to the source code, data, and scripts necessary
for reproducing the results described in the paper.
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By offering these artifacts, the researchers enable fellow
researchers and practitioners to replicate and build upon their
work in Network Log detection. The artifacts include com-
prehensive software, data, and scripts employed to generate
the findings presented in the paper. The accessibility of the
GitHub repository ensures transparency. It fosters collabo-
ration among researchers, facilitating advancements in the
domain of Network Log detection and contributing to the
overall improvement of security systems.

1) Description & Requirements: To support the reproduc-
tion of our results, we have provided the code, sample data,
models, and intermediate files required to produce evasive
attacks from the evaluation. Although our artifacts make no
particular assumptions about computing power, 30GB of disk
space and 32GB of memory are required to store and run the
models, data samples, and software dependencies.

How to access Our code and data can be accessed at |https:
/fzenodo.org/records/16955361 and the DOI is https://doi.org/
10.5281/zenodo.16955361.

Hardware dependencies Running our experiments requires
approximately 30GB of disk storage to accommodate the
data, codebase. To efficiently load and process the datasets
and model weights during execution, a system with at least
32GB of system memory (RAM) is recommended. While the
experiments can be run entirely on CPU—taking around 30
minutes per run—they can be significantly accelerated with
GPU support. Specifically, using two NVIDIA RTX 3090
GPUs (each with 32GB of VRAM) can reduce the runtime
to approximately 5 minutes, depending on the specific task.
Software dependencies Our code is written in Python
and uses Miniconda for environment management. Miniconda
can be installed from https://conda.io/projects/conda/en/latest/
user-guide/install/index.html. Simply follow the installation
directions for your machine architecture. Python 3.9 will be
installed as part of the environment building process. Our
experiments were run on Ubuntu 22.

Benchmarks All the datasets and models required for use
with this artifact are provided in the Zenodo record.

2) Artifact Installation & Configuration: Commands are
listed below.

# GPU environment

> conda create -n entente python==3.9 -y
; conda activate entente

5 pip

install torch==1.10.1+culll torchvision==0.11.2+
culll -f https://download.pytorch.org/whl/culll/
torch_stable.html

install -r requirements.txt

install torch_scatter torch_sparse torch_cluster
torch_spline_conv -f https://data.pyg.org/whl/

torch-1.10.1+culll.html --no-index

pip

pip

# CPU environment

> conda create -n entente python==3.9 -y
3 conda activate entente

pip install torch==1.10.1 torchvision==0.11.2

5 pip install -r requirements.txt

6

pip install torch_scatter torch_sparse torch_cluster
torch_spline_conv -f https://data.pyg.org/whl/
torch-1.10.1+cpu.html --no-index
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3) Experiment Workflow: We provide detailed instructions
on how to run the system. In the README, we also provide
the exact commands to run for each major component.

4) Evaluation:

o Download Dataset and Code;

« Run the code for the Euler system on the OpTC dataset.

1 python Euler/run.py --cluster_fname optc_2_2

.json —--client_number 3 --epochs 1
python Euler/run.py --cluster_fname optc_3_3
.json —--client_number 4 --epochs 1

o Run the code for the Jbeil system on the LANL dataset.

1 python Jbeil/run.py --client_number 3
python Jbeil/run.py --client_number 4


https://zenodo.org/records/16955361
https://zenodo.org/records/16955361
https://doi.org/10.5281/zenodo.16955361
https://doi.org/10.5281/zenodo.16955361
https://zenodo.org/records/16014433
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